• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HU Jing, YAO Yang-ping, ZHANG Xue-dong, WEI Ying-qi, ZHANG Zi-tao, CHEN Zu-yu. Dynamic strength criterion for rock-like materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 495-502. DOI: 10.11779/CJGE202003011
Citation: HU Jing, YAO Yang-ping, ZHANG Xue-dong, WEI Ying-qi, ZHANG Zi-tao, CHEN Zu-yu. Dynamic strength criterion for rock-like materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 495-502. DOI: 10.11779/CJGE202003011

Dynamic strength criterion for rock-like materials

More Information
  • Received Date: March 03, 2019
  • Available Online: December 07, 2022
  • The strength of rock-like materials has obvious strain rate effect. Based on the characteristics of uniaxial dynamic strength, a simple strength criterion is proposed, which can uniformly predict the uniaxial strength from quasi-static to dynamic. Under the framework of the unified strength criterion, the triaxial dynamic strength criterion is studied. In the double-logarithmic coordinate system, the meridian strength envelopes at different strain rates are approximately parallel. The effects of friction, hydrostatic pressure and intermediate principal stress of the materials are not affected by the change of strain rate. Thus, a dynamic coordinate system is established, and the unified strength criterion is extended to consider the strain rate effect. Based on the obtained criterion, the uniaxial compressive and tensile strength are investigated. The strength criterion will represent similar characteristics to those obtained by uniaxial tests. Finally, the strength criterion is verified by strength tests of concrete. By fully understanding the dynamic strength characteristics, the parameters in the proposed strength criterion have clear physical meanings, and can provide a theoretical basis for dynamic response analysis.
  • [1]
    杜修力, 王阳, 路德春. 混凝土材料的非线性单轴动态强度准则[J]. 水利学报, 2010, 41(3): 300-309. doi: 10.13243/j.cnki.slxb.2010.03.012

    DU Xiu-li, WANG Yang, LU De-chun. Non-linear uniaxial dynamic strength criterion for concrete[J]. Journal of Hydraulic Engineering, 2010, 41(3): 300-309. (in Chinese) doi: 10.13243/j.cnki.slxb.2010.03.012
    [2]
    LU D, WANG G, DU X, et al. A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete[J]. International Journal of Impact Engineering, 2017, 103: 124-137. doi: 10.1016/j.ijimpeng.2017.01.011
    [3]
    ZHOU X Q, HAO H. Modelling of compressive behaviour of concrete-like materials at high strain rate[J]. International Journal of Solids and Structures, 2008, 45(17): 4648-4661. doi: 10.1016/j.ijsolstr.2008.04.002
    [4]
    REINHARDT H W, ROSSI P, VAN Mier J G M. Joint investigation of concrete at high rates of loading[J]. Materials and Structures, 1990, 23(3): 213-216. doi: 10.1007/BF02473020
    [5]
    EIBL J, SCHMIDT-HURTIENNE B. Strain-rate-sensitive constitutive law for concrete[J]. Journal of Engineering Mechanics, 1999, 125(12): 1411-1420. doi: 10.1061/(ASCE)0733-9399(1999)125:12(1411)
    [6]
    周秋景, 张国新, 李同春. 基于多轴等效应变动力损伤模型的混凝土坝工作性态分析[J]. 水力发电, 2014(12): 26-30. doi: 10.3969/j.issn.0559-9342.2014.12.009

    ZHOU Qiu-jing, ZHANG Guo-xin, LI Tong-chun. Analysis on working performance of concrete dams with a dynamic multi-axis equivalent strain damage model[J]. Water Power, 2014(12): 26-30. (in Chinese) doi: 10.3969/j.issn.0559-9342.2014.12.009
    [7]
    王怀亮, 宋玉普. 多轴应力状态下混凝土的动态强度准则[J]. 哈尔滨工业大学学报, 2014, 46(4): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201404016.htm

    WANG Huai-liang, SONG Yu-pu. A dynamic strength criterion of concrete under multiaxial stress state[J]. Journal of Harbin Institute of Technology, 2014, 46(4): 93-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201404016.htm
    [8]
    YAO Y, LU D, ZHOU A, et al. Generalized non-linear strength theory and transformed stress space[J]. Science in China Series E: Technological Sciences, 2004, 47(6): 691-709. doi: 10.1360/04ye0199
    [9]
    杜修力, 王国盛, 路德春. 混凝土材料非线性多轴动态强度准则[J]. 中国科学:技术科学, 2014, 44(12): 1319-1332. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201412010.htm

    DU Xiu-li, WANG Guo-sheng, LU De-chun. Nonlinear multiaxial dynamic strength criterion for concrete material[J]. Scientia Sinica Technologica, 2014, 44(12): 1319-1332. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201412010.htm
    [10]
    QIAN Q, QI C, WANG M. Dynamic strength of rocks and physical nature of rock strength[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2009, 1(1): 1-10. doi: 10.3724/SP.J.1235.2009.00001
    [11]
    WANG G, LU D, DU X, et al. Dynamic multiaxial strength criterion for concrete based on strain rate-dependent strength parameters[J]. J Eng Mech ASCE, 2018, 144: 4018018. doi: 10.1061/(ASCE)EM.1943-7889.0001428
    [12]
    YAO Y, HU J, ZHOU A, et al. Unified strength criterion for soils, gravels, rocks, and concretes[J]. Acta Geotechnica, 2015, 10(6): 749-759. doi: 10.1007/s11440-015-0404-x
    [13]
    吕培印. 混凝土单轴、双轴动态强度和变形试验研究[D]. 大连: 大连理工大学, 2001.

    LÜ Pei-yin. Experimental Study on Dynamic Strength and Deformation of Concrete Under Uniaxial and Biaxial Action[J]. Dalian: Dalian University of Technology, 2001. (in Chinese)
    [14]
    过镇海. 混凝土的强度和变形试验基础和本构关系[M]. 北京: 清华大学出版社, 1997.

    GUO Zhen-hai. Strength and Deformation of Concrete[M]. Beijing: Tsinghua University Press, 1997. (in Chinese)
    [15]
    张建民, 邵生俊. 三维应力条件下饱和砂土的动有效强度准则[J]. 水利学报, 1989(3): 54-59. doi: 10.3321/j.issn:0559-9350.1989.03.009

    ZHANG Jian-min, SHAO Sheng-jun. Dynamic effective strength criterion of saturated sand under three-dimensional stress[J]. Journal of Hydraulic Engineering, 1989(3): 54-59. (in Chinese) doi: 10.3321/j.issn:0559-9350.1989.03.009
    [16]
    LI H B, LI T J, ZHAO J. Triaxial compression tests on a granite at different strain rates and confining pressures[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(8): 1057-1063. doi: 10.1016/S1365-1609(99)00120-3
    [17]
    SHI L, WANG L, SONG Y, et al. Dynamic multiaxial strength and failure criterion of dam concrete[J]. Construction and Building Materials, 2014, 66: 181-191. doi: 10.1016/j.conbuildmat.2014.05.076
    [18]
    CHO S H, OGATA Y, KANEKO K. Strain-rate dependency of the dynamic tensile strength of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(5): 763-777. doi: 10.1016/S1365-1609(03)00072-8
    [19]
    CAI M, KAISER P K, SUORINENI F, et al. A study on the dynamic behavior of the Meuse/Haute-Marne argillite[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(8/9/10/11/12/13/14): 907-916.
    [20]
    KUBOTA S, OGATA Y, WADA Y, et al. Estimation of dynamic tensile strength of sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(3): 397-406. doi: 10.1016/j.ijrmms.2007.07.003
    [21]
    WANG Q Z, LI W, XIE H P. Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup[J]. Mechanics of Materials, 2009, 41(3): 252-260. doi: 10.1016/j.mechmat.2008.10.004
    [22]
    WANG Q Z, LI W, SONG X L. A method for testing dynamic tensile strength and elastic modulus of rock materials using SHPB[J]. Pure and Applied Geophysics, 2006, 163(5/6): 1091-1100.
    [23]
    GOLDSMITH W, SACKMAN J L, EWERTS C. Static and Dynamic Fracture Strength of Barre Granite[C]//International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, 1976: 303-309.
    [24]
    WANG H, RAMESH K T. Dynamic strength and fragmentation of hot-pressed silicon carbide under uniaxial compression[J]. Acta Materialia, 2004, 52(2): 355-367. doi: 10.1016/j.actamat.2003.09.036
  • Related Articles

    [1]HOU Tianshun, ZHANG Jiancheng, SHU Bo. Model tests on earth pressure at rest of light weight soil behind rigid retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 764-773. DOI: 10.11779/CJGE20220928
    [2]HOU Tian-shun, GUO Peng-fei, YANG Kai-xuan, WANG Qi, LUO Ya-sheng. Characteristics and method for calculating earth pressure at rest of light weight soil with foamed particles[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2234-2244. DOI: 10.11779/CJGE202212010
    [3]ZHANG Kun-yong, LI Guang-shan, MEI Xiao-hong, DU Wei. Stress-deformation characteristics of silty soil based on K0 consolidation and drainage unloading stress path tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1182-1188. DOI: 10.11779/CJGE201707003
    [4]MO Wei-hong, CHEN Xiao-ping, LUO Qing-zi. Deformation of soft soils under constant stress ration consolidation with K0 [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 798-803.
    [5]JIA Ning. Coefficient of at-rest earth pressure from limited backfill[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1333-1337.
    [6]Cyclic shearing behavior of K0-consolidated clay and its rheological simulation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1946-1955.
    [7]Critical load of ground considering load embedded depth and variation of K0[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1930-1934.
    [8]YAO Yangping, HOU Wei. A unified hardening model for K0 overconsolidated clays[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 316-322.
    [9]WANG Lizhong, DAN Hanbo. Elastic viscoplastic constitutive model for K0-consolidated soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1344-1354.
    [10]WANG Lizhong, YE Shenghua, SHEN Kailun, HU Yayuan. Undrained shear strength of K0 consolidated soft clays[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 970-977.
  • Cited by

    Periodical cited type(12)

    1. 裘友强,张留俊,刘洋,刘军勇,尹利华. “双碳”背景下公路软土地基处理技术研究进展. 水利水电技术(中英文). 2025(01): 113-131 .
    2. 龙军,彭搏程. 基于桩周土围限失效的筋箍料粒桩复合地基承载力计算. 公路工程. 2025(01): 138-143 .
    3. 谭鑫,尹心,胡政博,裘钊辉,陈昌富. 筋箍碎石桩承载机制的三维离散-连续介质耦合数值模拟. 铁道学报. 2023(04): 139-147 .
    4. 王嘉鑫,纪明昌,郑俊杰,郑烨炜. 软土地基中包裹碎石桩地震动力响应数值模拟研究. 土木与环境工程学报(中英文). 2023(05): 58-65 .
    5. 郝耀虎,周杨,王闫超,刘少炜. 基于透明土技术的加筋碎石桩承载特性试验研究. 铁道科学与工程学报. 2023(12): 4582-4591 .
    6. 黄河,罗正东,李检保,罗彪. 竹筋格栅套筒加筋碎石桩承载力分析. 人民长江. 2022(06): 193-197 .
    7. 袁涌筌,赵明华,杨超炜,肖尧. 循环荷载下筋箍碎石桩复合地基动力特性数值分析. 湖南大学学报(自然科学版). 2022(11): 198-205 .
    8. 臧一平,刘聪. 考虑鼓胀和自重的散体材料桩复合地基承载力分析. 地基处理. 2021(06): 451-457 .
    9. 郑刚,周海祚. 复合地基极限承载力与稳定研究进展. 天津大学学报(自然科学与工程技术版). 2020(07): 661-673 .
    10. 李建喜,康超,李玉峰. 碎石桩处理软土地基的现状及趋势分析. 北方建筑. 2020(03): 60-63+67 .
    11. 邱梦瑶,陈树培,唐亮,凌贤长,张效禹,李雪伟,刘书幸. 加筋碎石桩复合饱和砂土地基抗液化性能评价方法. 地震研究. 2020(03): 554-562+603 .
    12. 姚志伟,张永艳. 筏板基础下碎石桩改良软土地基性能的数值研究. 河北工业科技. 2020(05): 359-365 .

    Other cited types(13)

Catalog

    Article views (411) PDF downloads (259) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return