• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIN Zhu-yuan, TANG Chao-sheng, ZENG Hao, WANG Yi-shu, CHENG Qing, SHI Bin. Laboratory characterization and discrete element modeling of desiccation cracking behavior of soils under different boundary conditions[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 372-380. DOI: 10.11779/CJGE202002019
Citation: LIN Zhu-yuan, TANG Chao-sheng, ZENG Hao, WANG Yi-shu, CHENG Qing, SHI Bin. Laboratory characterization and discrete element modeling of desiccation cracking behavior of soils under different boundary conditions[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 372-380. DOI: 10.11779/CJGE202002019

Laboratory characterization and discrete element modeling of desiccation cracking behavior of soils under different boundary conditions

More Information
  • Received Date: March 27, 2019
  • Available Online: December 07, 2022
  • In order to explore the boundary effect of the desiccation cracking process, multiple sets of drying tests are carried out using the containers with different bottom roughnesses. Two different forming patterns can be observed in the laboratory tests, initiating from the top/bottom, and there is propagation closely related to the sample/container interface contact conditions. This verifies the boundary effect of the crack propagation. In order to understand the internal mechanism of the desiccation boundary effect of the soils more deeply, a discrete element model is established based on the drying tests. A water loss rate gradient parameter along the depth is introduced innovatively to simulate the change of the evaporation condition of the upper boundary of the soil samples. By setting the friction coefficient of the bottom surface, the contact condition of the lower boundary of the sample is simulated. The simulated results are compared with the experimental ones and found to have good agreement. In general, the initiation and propagation of desiccation cracks are the result of the combination of water loss due to surface evaporation and bottom friction. When the coefficient of friction of the bottom surface is relatively small, the development of the fracture is dominated by water loss, and most of the fractures develop from the top surface. With the increase of the friction coefficient of the bottom surface, the effect of the contact condition of the bottom surface on the development of the crack gradually increase, and the proportion of the number of cracks developed from the bottom surface increases accordingly.
  • [1]
    LOZADA C, THOREL L, CAICEDO B. Effects of cracks and desiccation on the bearing capacity of soil deposits[J]. Géotechnique Letters, 2015, 5(3): 112-117. doi: 10.1680/jgele.15.00021
    [2]
    袁俊平, 殷宗泽. 膨胀土裂隙的量化指标与强度性质研究[J]. 水利学报, 2004, 35(6): 108-113. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200406019.htm

    YUAN Jun-ping, YIN Zong-ze. Quantitative index of fissure and strength characteristics of fissured expansive soils[J]. Journal of Hydraulic Engineering, 2004, 35(6): 108-113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200406019.htm
    [3]
    姚海林, 郑少河, 葛修润, 等. 裂缝膨胀土边坡稳定性评价[J]. 岩石力学与工程学报, 2002, 21(增刊2): 2331-2335.

    YAO Hai-lin, ZHENG Shao-he, GE Xiu-run, et al. Assessment on slope stability in cracking expansive soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(S2): 2331-2335. (in Chinese)
    [4]
    MITCHELL J K. Fundamentals of Soil Behavior[M]. New York: Wiley, 1993.
    [5]
    LAKSHMIKANTHAM. R, PRATPERE C, ALBERTO LEDESMA. Experimental evidence of size effect in soil cracking[J]. Canadian Geotechnical Journal, 2008, 49(3): 264-284.
    [6]
    唐朝生, 施斌, 顾凯. 土中水分的蒸发过程试验研究[J]. 工程地质学报, 2011, 19(6): 875-881. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201106011.htm

    TANG Chao-sheng, SHI Bin, GU Kai. Experimental investigation on Evaporation process of water in soil during drying[J]. Journal of Engineering Geology, 2011, 19(6): 875-881. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201106011.htm
    [7]
    唐朝生, 施斌, 刘春. 膨胀土收缩开裂特性研究[J]. 工程地质学报, 2012, 20(5): 663-673. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201205004.htm

    TANG Chao-sheng, SHI Bin, LIU Chun. Study on desiccation cracking behaviour of expansive soil[J]. Journal of Engineering Geology, 2012, 20(5): 663-673. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201205004.htm
    [8]
    唐朝生, 王德银, 施斌, 等. 土体干缩裂隙网络定量分析[J]. 岩土工程学报, 2013, 35(12): 2298-2305. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312026.htm

    TANG Chao-sheng, WANG De-yin, SHI Bin, et al. Quantitative analysis of soil desiccation crack network[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2298-2305. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312026.htm
    [9]
    唐朝生, 施斌, 崔玉军. 土体干缩裂隙的形成发育过程及机理[J]. 岩土工程学报, 2018, 40(8): 1415-1423. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808008.htm

    TANG Chao-sheng, SHI Bin, CUI Yu-jun. Behaviors and mechanisms of desiccation cracking of soils[J]. Chinese Jouranl Geotechnical Engineering, 2018, 40(8): 1415-1423. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808008.htm
    [10]
    PERON H, HUECKEL T, LALOUI L, et al. Fundamentals of desiccation cracking of fine-grained soils: experimental characterisation and mechanisms identification[J]. Canadian Geotechnical Journal, 2009, 46(10): 1177-1201. doi: 10.1139/T09-054
    [11]
    WEINBERGER R. Initiation and growth of cracks during desiccation of stratified muddy sediments[J]. Journal of Structural Geology, 1999, 21(4): 379-386. doi: 10.1016/S0191-8141(99)00029-2
    [12]
    曾浩, 唐朝生, 林銮. 土体干缩裂隙发育方向及演化特征的层间摩擦效应研究[J]. 岩土工程学报, 2019, 41(6): 1172-1180. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906026.htm

    ZENG Hao, TANG Chao-sheng, LIN Luan. Interfacial friction dependence of propagation direction and evolution characteristics of soil desiccation cracks[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1172-1180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906026.htm
    [13]
    CUNDALL P A, STRACK O D L. A discrete numerical mode for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
    [14]
    蒋明镜, 胡海军, 彭建兵. 结构性黄土一维湿陷特性的离散元数值模拟[J]. 岩土力学, 2013, 34(4): 1121-1130. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201304036.htm

    JIANG Ming-jing, HU Hai-jun, PENG Jian-bing. Simulation of collapsible characteristics of structural loess under one-dimensional compression condition by discrete element method[J]. Rock and Soil Mechanics, 2013, 34(4): 1121-1130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201304036.htm
    [15]
    张程林, 周小文. 砂土颗粒三维形状模拟离散元算法研究[J]. 岩土工程学报, 2015, 37(增刊1): 115-119. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S1024.htm

    ZHANG Cheng-lin, ZHOU Xiao-wen. Algorithm for modelling three-dimensional shape of sand based on discrete element method[J]. Journal of Engineering Geology, 2015, 37(S1): 115-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S1024.htm
    [16]
    PERON H, DELENNE J Y, LALOUI L, et al. Discrete element modelling of drying shrinkage and cracking of soils[J]. Computers & Geotechnics, 2009, 36(1/2): 61-69.
    [17]
    司马军, 蒋明镜, 周创兵. 黏性土干缩开裂过程离散元数值模拟[J]. 岩土工程学报, 2013, 35(增刊2): 286-291. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2049.htm

    SIMA Jun, JIANG Ming-jing, ZHOU Chuang-bing, Numerical simulation of desiccation cracking of clay soils by DEM[J]. Chinese Journal of Geotechnical Engineering, 2003, 35(S2): 286-291. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2049.htm
    [18]
    张晓宇, 许强, 刘春, 等. 黏性土失水开裂多场耦合离散元数值模拟[J]. 工程地质学报, 2017, 25(6): 1430-1437.

    ZHANG Xiao-yu, XU Qiang, LIU Chun, et al. Numerical simulation of drying cracking using multifield coupling discrete element method[J]. Journal of Engineering Geology, 2017, 25(6): 1430-1437. (in Chinese)
    [19]
    COSTA S, KODIKARA J, SHANNON B. Salient factors controlling desiccation cracking of clay in laboratory experiments[J]. Géotechnique, 2013, 63(1): 18-29.
    [20]
    KODIKARA J, CHOI X. A simplified analytical model for desiccation cracking of clay layers in laboratory tests[C]//Proceedings of the 4th International Conference on Unsaturated Soil. New York, 2006: 2558-2569.
    [21]
    SIMA J, JIANG M J, ZHOU C B. Numerical simulation of desiccation cracking in a thin clay layer using 3D discrete element modeling[J]. Computers and Geotechnics, 2014, 56: 168-180.
    [22]
    GUO M Y, HAN M C, YU X. Laboratory characterization and discrete element modeling of shrinkage[J]. Canadian Geotechnical Journal, 2016, 14: 5-13.
    [23]
    冉龙洲, 宋翔东, 唐朝生. 干燥过程中膨胀土抗拉强度特性研究[J]. 工程地质学报, 2011, 19(4): 620-625. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201104029.htm

    RAN Long-zhou, SONG Xiang-dong, TANG Chao-sheng. Laboratorial investigation on tensile strength of expansive soil during drying[J]. Journal of Engineering Geology, 2011, 19(4): 620-625. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201104029.htm
    [24]
    El YOUSSOUFI M S, DELENNE J Y, RADIAI F. Self-stresses and crack formation by particle swelling in cohesive granular media[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2005, 71(51): 5-7.
    [25]
    刘昌黎, 唐朝生, 李昊达, 等. 界面粗糙度对土体龟裂影响的试验研究[J]. 工程地质学报, 2017, 25(5): 1314-1321. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201705018.htm

    LIU Chang-li, TANG Chao-sheng, LI Hao-da, et al. Experimental study on eddect of interfacial roughness on desiccation cracking behavior of soil[J]. Journal of Engineering Geology, 2017, 25(5): 1314-1321. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201705018.htm
    [26]
    曾浩, 唐朝生, 刘昌黎, 等. 控制厚度条件下土体干缩开裂的界面摩擦效应[J]. 岩土工程学报, 2019, 41(3): 544-553. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903021.htm

    ZENG Hao, TANG Chao-sheng, LIN Chang-li, et al. Effect of boundary friction and layer thickness on soil desiccation cracking behavior[J]. Chinese Journal of Geotechnical Engineering, 2018, 41(3): 544-553. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903021.htm
    [27]
    ITASCA. PFC3D (Particle Flow Code in 3 Dimensions), Version 3.00[R]. Minneapolis: Itasca Consulting Group, Inc.; 2003.
    [28]
    AMARASIRI A L, KODIKARA J K, SUSANGA C. Numerical modelling of desiccation cracking[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2011, 35(1): 82-96.
    [29]
    JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique to generate homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597.
    [30]
    HILLIL D. Introduction to Environmental Soil Physics[M]. San Diego, CA: Elsevier Science, 2004.
  • Cited by

    Periodical cited type(9)

    1. 宋泽宇,蒲力,马云飞. 含有机质黏土全吸力范围内土-水特征曲线试验研究. 水力发电. 2024(10): 114-118 .
    2. 童富果,蔡文婧,薛松,刘刚,李东奇. 基于孔隙分形特征的水泥基毛细吸力预测模型. 水利水电科技进展. 2024(06): 27-33 .
    3. 幸锦雯,孙文,余光耀,徐娜,麻建宏. 基于核磁共振及分形理论预测非饱和土石混合体SWCC. 水利水电技术(中英文). 2023(10): 180-189 .
    4. 王海曼,倪万魁. 不同干密度压实黄土的饱和/非饱和渗透系数预测模型. 岩土力学. 2022(03): 729-736 .
    5. 魏小棋,陈盼. 压实延安黄土土-水特性及快速测定方法探讨. 土工基础. 2022(03): 446-450 .
    6. 王海曼,倪万魁,刘魁. 延安压实黄土土-水特征曲线的快速预测方法. 岩土力学. 2022(07): 1845-1853 .
    7. 刘莉,姜大伟,于明波,颜荣涛,于海浩,陈波. 千枚岩全风化土的持水特性研究. 河南科技大学学报(自然科学版). 2022(06): 53-58+8 .
    8. 高世壮,薛善彬,张鹏,李春云,王俊洁. 高温作用对应变硬化水泥基复合材料吸水性能及微结构演化特征的影响. 复合材料学报. 2022(10): 4778-4787 .
    9. 马冬冬,马芹永,黄坤,张蓉蓉. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究. 岩土工程学报. 2021(03): 572-578 . 本站查看

    Other cited types(14)

Catalog

    Article views PDF downloads Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return