• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FANG Jin-cheng, KONG Gang-qiang, MENG Yong-dong, XU Xiao-liang, LIU Hong-cheng. Thermo-mechanical coupling characteristics of single energy pile operation in 2×2 pile-cap foundation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 317-324. DOI: 10.11779/CJGE202002013
Citation: FANG Jin-cheng, KONG Gang-qiang, MENG Yong-dong, XU Xiao-liang, LIU Hong-cheng. Thermo-mechanical coupling characteristics of single energy pile operation in 2×2 pile-cap foundation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 317-324. DOI: 10.11779/CJGE202002013

Thermo-mechanical coupling characteristics of single energy pile operation in 2×2 pile-cap foundation

More Information
  • Received Date: September 11, 2018
  • Available Online: December 07, 2022
  • The energy pile technology is a new energy-saving technology that integrates the functions of ground source heat pump and building pile foundation. In order to study the thermo-mechanical characteristics of energy piles and their effects on the other parts of pile foundation, field tests on the thermal response of a 2×2 pile-cap foundation under single pile heating conditions are carried out. The temperature and strain changes of energy piles, diagonal piles and cap are measured. The mechanical properties of the energy piles due to temperature changes, the influence laws on the soil around the pile and the structure of the cap are discussed. It is shown that the maximum constraint compressive stress of 3.94 MPa is generated in the middle of the pile during the summer operation of the energy piles. The condition of the thermal stresses associated with the complete heating and restraint of the pile provides a suitable upper bound for design, and the measured value is about 48% of the upper bound. Under the combined effects of atmospheric temperature and operating pile, an additional tensile stress of approximately 1.05 MPa (approximately 43.8% of the tensile strength of concrete) will be induced in the middle of the cap. The head displacement of the energy pile is about -0.6 mm (0.6‰ of pile diameter) under the thermo-mechanical coupling.
  • [1]
    BRANDL H. Energy foundations and other thermo-active ground structures[J]. Géotechnique, 2006, 56(2): 81-122. doi: 10.1680/geot.2006.56.2.81
    [2]
    刘汉龙, 孔纲强, 吴宏伟. 能量桩工程应用研究进展及PCC能量桩技术开发[J]. 岩土工程学报, 2014, 36(1): 176-181. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401024.htm

    LIU Han-long, KONG Gang-qiang, NG W W C. Applications of energy piles and technical development of PCC energy piles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 176-181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401024.htm
    [3]
    桂树强, 程晓辉. 能量桩换热过程中结构响应原位试验研究[J]. 岩土工程学报, 2014, 36(6): 1087-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201406018.htm

    GUI Shu-qiang, CHENG Xiao-hui. In-situ test for structural responses of energy pile to heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1087-1094. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201406018.htm
    [4]
    BOURNE-WEBB P J, AMATYA B, SOGA K, et al. Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles[J]. Géotechnique, 2009, 59(3): 237-248. doi: 10.1680/geot.2009.59.3.237
    [5]
    YOU S, CHENG X, GUO H, YAO Z. In-situ experimental study of heat exchange capacity of CFG pile geothermal exchangers[J]. Energy & Buildings, 2014, 79(4): 23-31.
    [6]
    YOU S, CHENG X, GUO H, et al. Experimental study on structural response of CFG energy piles[J]. Applied Thermal Engineering, 2016, 96: 640-651. doi: 10.1016/j.applthermaleng.2015.11.127
    [7]
    SUTMAN M, OLGUN C G, BRETTMANN T. Full-scale field testing of energy piles[J]. Geotechnical Special Publication, 2015: 1638-1647.
    [8]
    路宏伟, 蒋刚, 王昊, 等. 摩擦型能量桩荷载-温度现场联合测试与承载性状分析[J]. 岩土工程学报, 2017, 39(2): 334-342. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201702022.htm

    LU Hong-wei, JIANG Gang, WANG Hao, et al. In-situ tests and thermo-mechanical bearing characteristics of friction geothermal energy piles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 334-342. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201702022.htm
    [9]
    LALOUI L, NUTH M, VULLIET L. Experimental and numerical investigations of the behavior of a heat exchanger pile[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2006, 30(8): 763-781.
    [10]
    MURPHY K D, MCCARTNEY J S, HENRY K S. Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations[J]. Acta Geotechnica, 2015, 10(2): 179-195. doi: 10.1007/s11440-013-0298-4
    [11]
    KONG G, WU D, LIU H L, et al. Performance of a geothermal energy deicing system for bridge deck using a pile heat exchanger[J]. International Journal of Energy Research, 2019, 43(1): 596-603.
    [12]
    混凝土结构设计规范:GB 50010—2010[S]. 2015.

    Code for Design of Concrete Structure: GB50010—2010[S]. 2015. (in Chinese)
    [13]
    桩基地热能利用技术标准:JGJ/T 438—2018[S]. 2018.

    Technical Standard for Utilization of Geothermal Energy through Piles: JGJ/T 438—2018[S]. 2018. (in Chinese)
    [14]
    MCCARTNEY J S, MURPHY K D. Strain distributions in full-scale energy foundations[J]. DFI Journal-The Journal of the Deep Foundations Institute, 2012, 6(2): 26-38.
  • Cited by

    Periodical cited type(2)

    1. 原媛,刘丝丝,崔勇涛,赖智龙,廖德祥. 生物酶用于河湖底泥脱水减量调理的对比研究. 水资源与水工程学报. 2025(01): 154-162 .
    2. 汤连生,陈洋,曾显帅,程子华,丁威涯. 聚合氯化铝预处理污泥联合脱水有效性及机理. 中山大学学报(自然科学版)(中英文). 2024(04): 37-46 .

    Other cited types(5)

Catalog

    Article views (310) PDF downloads (110) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return