• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
YANG Tao, DAI Ji-tong, WANG Heng-dong. Analytical solutions for consolidation of a composite ground with floating stiffened deep cement mixing columns with long core piles[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 246-252. DOI: 10.11779/CJGE202002005
Citation: YANG Tao, DAI Ji-tong, WANG Heng-dong. Analytical solutions for consolidation of a composite ground with floating stiffened deep cement mixing columns with long core piles[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 246-252. DOI: 10.11779/CJGE202002005

Analytical solutions for consolidation of a composite ground with floating stiffened deep cement mixing columns with long core piles

More Information
  • Received Date: May 07, 2019
  • Available Online: December 07, 2022
  • The consolidation equations and the corresponding solution conditions of the composite ground with floating stiffened deep cement mixing (SDCM) columns with long core piles are derived under an instant loading. On the basis of one-dimensional consolidation theory of a third-layer soil ground, the corresponding analytical consolidation solutions are developed, including the average excess pore water pressures within the surrounding soil and underlying soil and the overall average degree of consolidation of the composite ground. The correctness and accuracy of the proposed analytical solutions are verified by comparison of the consolidation rates by the proposed analytical solution and the FEM. Some main factors are analyzed to investigate the consolidation behavior of this type of composite ground using the proposed analytical solution. The results show that the consolidation rate of the composite ground depends mainly on the penetration ratio of the SDCM columns with long core piles and the stiffness of the underlying soil. It increases with increasing penetration ratio of the pile and the constrained modulus of the underlying soil. The variations in the length, thickness and stiffness of the deep cement mixing (DCM) column sockets as well as the area core ratio of the concrete core piles have little effect on the consolidation rate of the composite ground. An increase in the modulus of the core pile decreases slightly the consolidation rate of the composite ground at the early stage of consolidation process, and it affects insignificantly the consolidation rate at the later stage of consolidation.
  • [1]
    ZHENG G, GU X L, LING G R. Development and practice of composite DMM column in China[C]//Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering. Osaka, 2005: 1295-1299.
    [2]
    HAN J. Recent research and development of ground column technologies[J]. Ground Improvement,2015,168(4): 1-19.
    [3]
    凌光容, 安海玉, 谢岱宗, 等. 劲性搅拌桩的试验研究[J]. 建筑结构学报, 2001, 22(2): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB200102017.htm

    LING Guang-rong, AN Hai-yu, XIE Dai-zong, et al. Experimental study on concrete core mixing pile[J]. Journal of Building Structure, 2001, 22(2): 92-96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB200102017.htm
    [4]
    董平, 陈征宙, 秦然. 砼芯水泥土搅拌桩在软土地基中的应用[J]. 岩土工程学报, 2002, 24(2): 204-207. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200202017.htm

    DONG Ping, CHEN Zheng-zhou, QIN Ran. Use of concrete-cored DCM pile in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 204-207. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200202017.htm
    [5]
    吴迈, 赵欣, 窦远明, 等. 水泥土组合桩室内试验研究[J]. 工业建筑, 2004, 34(11): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ200411011.htm

    WU Mai, ZHAO Xin, DOU Yuan-ming, et al. Experimental study of stiffened DCM pile in laboratory[J]. Industrial Construction, 2004, 34(11): 45-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ200411011.htm
    [6]
    VOOTTIPRUEX P, SUKSAWAT T, BERGADO D T, et al. Numerical simulations and parametric study of SDCM and DCM piles under full scale axial and lateral loads[J]. Computers and Geotechnics, 2011, 38: 318-329. doi: 10.1016/j.compgeo.2010.11.006
    [7]
    吴迈, 窦远明, 王恩远. 水泥土组合桩荷载传递试验研究[J]. 岩土工程学报, 2004, 26(3): 432-435. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200403034.htm

    WU Mai, DOU Yuanming, WANG Enyuan. A study on load transfer mechanism of stiffened DCM pile[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(3): 432-435. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200403034.htm
    [8]
    丁永君, 李进军, 刘峨, 等. 劲性搅拌桩的荷载传递规律[J]. 天津大学学报(自然科学与工程技术版), 2010, 43(6): 530-536. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201006012.htm

    DING Yong-jun, LI Jin-jun, LIU E, et al. Load transfer mechanism of reinforced mixing pile[J]. Journal of Tianjin University (Science and Technology), 2010, 43(6): 530-536. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201006012.htm
    [9]
    顾士坦, 施建勇, 王春秋, 等. 劲性搅拌桩芯桩荷载传递规律理论研究[J]. 岩土力学, 2011, 32(8): 2473-2478. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201108038.htm

    GU Shi-tan, SHI Jian-yong, WANG Chun-qiu, et al. Theoretical study of core pile load transfer regularity of reinforced mixing pile[J]. Rock and Soil Mechanics, 2011, 32(8): 2473-2478. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201108038.htm
    [10]
    WONGLERT A, JONGPRADIST P. Impact of reinforced core on performance and failure behavior of stiffened deep cement mixing piles[J]. Computers and Geotechnics, 2015, 69: 93-104.
    [11]
    WONGLERT A, JONGPRADIST P, JAMSAWANG P, et al. Bearing capacity and failure behaviors of floating stiffened deep cement mixing column under axial load[J]. Soils and Foundations, 2018, 58(2): 446-461.
    [12]
    WANG C, XU Y F, DONG P. Plate load tests of composite foundation reinforced by concrete-cored DCM pile[J]. Geotechnical and Geological Engineering, 2014, 32(1): 85-96.
    [13]
    VOOTTIPRUEX P, BERGADO D T, SUKSAWAT T, et al. Behavior and simulation of deep cement mixing (DCM) and stiffened deep cement mixing (SDCM) piles under full scale loading[J]. Soils and Foundations, 2011, 51(2): 307-320.
    [14]
    WANG C, XU YF, DONG P. Working characteristics of concrete-cored deep cement mixing piles under embankments[J]. Journal of Zhejiang University (Applied Physics & Engineering), 2014, 15(6): 419-431.
    [15]
    叶观宝, 蔡永生, 张振. 加芯水泥土桩复合地基桩土应力比计算方法研究[J]. 岩土力学, 2016, 37(3): 672-678. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603009.htm

    YE Guan-bao, CAI Yong-shen, ZHANG Zhen. Research on calculation of pile-soil stress ratio for composite foundation reinforced by stiffened deep mixed piles[J]. Rock and Soil Mechanics, 2016, 37(3): 672-678. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603009.htm
    [16]
    YE G B, RAO F R, ZHANG Z, et al. Calculation method for settlement of stiffened deep mixed column-supported embankment over soft clay[C]//Proceedings of Geoshanghai 2018 International Conference. Shanghai, 2018: 22-29.
    [17]
    杨涛, 唐凤. 变荷载下劲性搅拌桩复合地基固结分析[J]. 建筑结构学报, 2017, 38(9): 160-166. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201709019.htm

    YANG Tao, TANG Feng. Consolidation analysis of composite ground with stiffened deep cement mixing columns under time- dependent loading[J]. Journal of Building Structures, 2017, 38(9): 160-166. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201709019.htm
    [18]
    陈华顺, 孙元奎, 李挺. 长芯劲性桩桩侧摩阻力计算方法探讨[J]. 水运工程, 2011(5): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201105009.htm

    CHEN Huai-shun, SUN Yuan-kui, LI Ting. Calculation method for side friction of stiffened piles with long core pile[J]. Port & Waterway Engineering, 2011(5): 40-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201105009.htm
    [19]
    程博华. 基于破坏模式的长芯劲性搅拌桩竖向承载力计算方法研究[J]. 铁道建筑技术, 2016(6): 102-106. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS201606029.htm

    CHENG Bo-hua. Study on calculation method of vertical bearing capacity of long core strength mixing pile based on failure mode[J]. Railway Construction Technology, 2016(6): 102-106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS201606029.htm
    [20]
    杨涛, 戴基彤, 王恒栋. 刚性基础下T形劲性搅拌桩复合地基固结解析解[J]. 工业建筑, 2018, 48(9): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201809017.htm

    YANG Tao, DAI Ji-tong, WANG Heng-dong. Analytical solution for consolidation of a composite ground with T-shaped stiffened deep cement mixing columns under rigid foundation[J]. Industrial Construction, 2018, 48(9): 105-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201809017.htm
    [21]
    YANG T, YANG J Z, NI J. Analytical solution for the consolidation of a composite ground reinforced by partially penetrated impervious column[J]. Computers and Geotechnics, 2014, 57: 30-36.
    [22]
    谢康和. 成层地基一维固结理论研究最新进展[C]//第二届岩土力学与工程学术讨论会论文集. 杭州: 浙江大学出版社, 1995: 1-9.

    XIE Kang-he. The new development of one-dimensional consolidation theory of layered soil ground[C]//Proceedings of 2nd Conference on Soil Mechanics and Geotechnical Engineering. Hangzhou: Zhejiang University Press, 1995: 1-9. (in Chinese)
  • Related Articles

    [1]Influence of compaction and hydrophobic agent content on the breakthrough pressure of hydrophobic soil[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240364
    [2]LIU Feiyu, KONG Jianjie, YAO Jiamin. Effects of rock content and degree of compaction on interface shear characteristics of geogrid-soil-rock mixture[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 903-911. DOI: 10.11779/CJGE20220287
    [3]ZHAO Wen-he, YANG Xiu-juan, WANG Bao-zhong, FAN Heng-hui, MENG Min-qiang, ZHU Zhen. Laws of water migration and settlement at interface in loess filled areas under rainfalls[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1710-1720. DOI: 10.11779/CJGE202209016
    [4]WANG Lai-cai, HU Hai-jun, WANG Chen, KANG Shun-xiang. Measurement and prediction of water retention curve of remolded loess with different degrees of compaction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 204-208. DOI: 10.11779/CJGE2021S1037
    [5]WU Yang, HUANG Jin-sheng, CUI Jie, YOSHIMOTO Norimasa. Influences of particle shape and degree of compaction on shear response of clinker ash[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2220-2229. DOI: 10.11779/CJGE202112008
    [6]XU Jie, HU Hai-tao, ZHENG Zhi. Effects of compaction and water content on thermal conductivity of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 244-248. DOI: 10.11779/CJGE2020S1048
    [7]JIA Liang, ZHU Yan-peng, ZHU Jun-chuan. Influencing factors for shear strength of Malan and Lishi compacted loess in Lanzhou[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 120-124. DOI: 10.11779/CJGE2014S2020
    [8]ZHANG Yu-hui, ZHANG Xian-min, CHENG Guo-yong. Evaluation of compactness degree of interval soil in soil-stone mixtures by use of shear-wave velocity[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 909.
    [9]WANG Xie-qun, ZOU Wei-lie, LUO Yi-dao, WANG Jian-feng, DENG Wei-dong. SWCCs and influence of temperature on matrix suction under different compaction degrees[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 368.
    [10]Study on RIC construction method for tamping of backfill behind aboutment in express highway[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 702-705.
  • Cited by

    Periodical cited type(22)

    1. 王智超,彭柱,彭峰,闫实. 聚氨酯固化钙质砂物理力学特性. 长江科学院院报. 2024(01): 107-113 .
    2. 韩庆华,王永超,刘铭劼,李浩斌. 振动台试验饱和机制砂模型土动力特性研究. 土木工程学报. 2024(03): 110-122 .
    3. 王家全,和玉,祝梦柯,钱弘毅. 相对密实度和固结应力比对北部湾海砂动力特性影响的试验研究. 安全与环境工程. 2024(04): 20-28 .
    4. 王钰轲,李俊豪,邵景干,余翔. 不同影响因素下路用黄河泥沙动剪切模量和阻尼比试验及理论模型研究. 工程科学学报. 2023(03): 509-519 .
    5. 胡健,肖杨,肖鹏,王林,丁选明,仉文岗,刘汉龙. 基于机器学习预测微生物加固钙质砂统一动强度. 中国公路学报. 2023(02): 80-88 .
    6. 刘鑫,李飒,尹福顺,姚婷. 基于动态图像技术的南海钙质土颗粒形态特征研究. 岩土工程学报. 2023(03): 590-598 . 本站查看
    7. 邱筱童,尹训强,王桂萱. 考虑不同影响因素的珊瑚岛礁场地地震响应分析. 自然灾害学报. 2023(01): 131-138 .
    8. 尹福顺,李飒,刘鑫. 钙质粗粒料颗粒强度和压缩特性的试验研究. 岩土力学. 2023(04): 1120-1129+1152 .
    9. 李能,吴杨,周福霖,谭平. 岛礁吹填珊瑚砂不排水单调和循环剪切特性试验. 中国公路学报. 2023(08): 152-161 .
    10. 郭桢,蒲建,卢劲锴,黄雨. 南海西沙岛礁非饱和珊瑚砂共振柱-弯曲元试验研究. 工程地质学报. 2023(05): 1552-1562 .
    11. 吴杨,崔杰,李晨,温丽维,单振东,廖静容. 细粒含量对岛礁吹填珊瑚砂最大动剪切模量影响的试验研究. 岩石力学与工程学报. 2022(01): 205-216 .
    12. 赵云辉,孟凡超,郑志华. 相对密实度对结构性砂土动剪切模量和阻尼比影响的试验研究. 工程抗震与加固改造. 2022(01): 152-159 .
    13. 吴琪,杨铮涛,刘抗,陈国兴. 细粒含量对饱和珊瑚砂动力变形特性影响试验研究. 岩土工程学报. 2022(08): 1386-1396 . 本站查看
    14. 陈龙珠,顾晓强. 共振柱试验确定土动剪切模量和阻尼比的理论辨析. 地基处理. 2022(05): 445-450 .
    15. 王伟,李犇,罗佳乐,胡俊,姜屏,李娜. 动荷载作用历史对水泥固化钙质砂三轴力学特性影响. 自然灾害学报. 2022(05): 158-167 .
    16. 周正龙,丁芷萱,刘杰,赵凯,梁珂,鹿庆蕊. 南海海域饱和粉土动剪切模量和阻尼比试验研究. 土木工程学报. 2022(S1): 227-233 .
    17. 宋前进,程磊,贺为民. 孔隙比对土体动力特性参数的影响——以豫东平原粉土为例. 科学技术与工程. 2021(07): 2830-2835 .
    18. 高盟,彭晓东,陈青生. 南海非饱和钙质砂动力特性三轴试验研究. 北京工业大学学报. 2021(06): 625-635 .
    19. ZHANG Yan-ling,DING Xuan-ming,CHEN Zhi-xiong,WU Qi,WANG Cheng-long. Seismic responses of slopes with different angles in coral sand. Journal of Mountain Science. 2021(09): 2475-2485 .
    20. 郭聚坤,王瑞,尹斌,卞贵建,魏道凯. 钢-钙质砂界面循环剪切特性试验研究. 建筑结构. 2021(S2): 1613-1617 .
    21. 宋前进,程磊,贺为民. 豫东平原粉质黏土动剪切模量与阻尼比试验研究. 地震工程学报. 2020(04): 1013-1018 .
    22. 信鹏飞,李飒,吴文娟. 冲击荷载作用下钙质砂破碎与变形特性研究. 水力发电学报. 2019(12): 102-111 .

    Other cited types(16)

Catalog

    Article views (366) PDF downloads (148) Cited by(38)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return