YANG Wei, CHEN Ren-peng, KANG Xin, Zaoui Ali. Radionuclide adsorption mechanism in buffer materials in high-level radioactive waste container: MD study[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 239-245. DOI: 10.11779/CJGE202002004
    Citation: YANG Wei, CHEN Ren-peng, KANG Xin, Zaoui Ali. Radionuclide adsorption mechanism in buffer materials in high-level radioactive waste container: MD study[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 239-245. DOI: 10.11779/CJGE202002004

    Radionuclide adsorption mechanism in buffer materials in high-level radioactive waste container: MD study

    More Information
    • Received Date: November 12, 2018
    • Available Online: December 07, 2022
    • The buffer material plays a decisive role in preventing the radionuclide to enter into the host rock, as it is the last defense of engineered barrier system. Under very high groundwater pressure, a large amount of cations percolate through the barrier with underground water, resulting in a complicated chemical condition. Molecular dynamics simulation is performed to deeply investigate the adsorption mechanism of radionuclide species onto substituted montmorillonite (001) surface in the presence of different counterions. MD simulations exhibit three typical adsorption modes: outer-sphere complex, monodentate inner-sphere complex and bidentate inner-sphere complex. With the presence of carbonate ions and covalent cations, the U atom in uranyl can coordinate with carbonate oxygen in connection with cations to form an intensive adsorption complex with MMT surface. The thermodynamic work of adhesion between the complexes and the MMT surface is calculated to evaluate the adsorption interaction. The complexes with the carbonate and covalent cation components exhibit a relatively high adhesion with the buffer material surface.
    • [1]
      杨波. 中国核电发展现状及趋势[J]. 世界环境, 2014(3): 18-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SJHJ201403009.htm

      YANG Bo. Current situation and development trend of nuclear power in China[J]. World Environment, 2014(3): 18-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJHJ201403009.htm
      [2]
      ZHANG C L, WANG J, SU K. Concepts and tests for disposal of radioactive waste in deep geological formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 750-767.
      [3]
      GECKEIS H, L TZENKIRCHEN J, POLLY R, et al. Mineral-water interface reactions of actinides[J]. Chemical Reviews, 2013, 113(2): 1016. doi: 10.1021/cr300370h
      [4]
      SILVA J C G E D, CAMPOS B, AGUILAR J, et al. Adsorption of uranyl ions on kaolinite, smectite, humic acids and composite clay materials[J]. Applied Clay Science, 2013.
      [5]
      RIHS S, GAILLARD C, REICH T, et al. Uranyl sorption onto birnessite: A surface complexation modeling and EXAFS study[J]. Chemical Geology, 2014, 373(19): 59-70.
      [6]
      FERNANDES M M, BAEYENS B, D HN R, et al. U(VI) sorption on montmorillonite in the absence and presence of carbonate: a macroscopic and microscopic study[J]. Geochimica Et Cosmochimica Acta, 2012, 93: 262-277. doi: 10.1016/j.gca.2012.04.017
      [7]
      MARQUES FERNANDES M, BAEYENS B, BRADBURY M H. The influence of carbonate complexation on lanthanide/actinide sorption on montmorillonite[J]. International Journal for Chemical Aspects of Nuclear Science & Technology, 2008, 96(9-11): 691-697.
      [8]
      REEDER R J, NUGENT M, PABALAN R T. Local strcuture of uranium(VI) sorbed on clinoptilolite and montmorillonite[J]. Water-Rock Interaction, 2001: 423-426.
      [9]
      PABALAN R T, TURNER D R. Uranium(6+) sorption on montmorillonite: Experimental and surface complexation modeling study[J]. Aquatic Geochemistry, 1997, 2(3): 203-226. doi: 10.1007/BF00119855
      [10]
      YANG W, ZHENG Y, ZAOUI A. Swelling and diffusion behaviour of Na-vermiculite at different hydrated states[J]. Solid State Ionics, 2015, 282: 13-17. doi: 10.1016/j.ssi.2015.09.007
      [11]
      YANG W, ZAOUI A. Uranyl adsorption on (001) surfaces of kaolinite: A molecular dynamics study[J]. Applied Clay Science, 2013, 81(4): 98-106.
      [12]
      ZHANG C, LOU Z. Freezing of water confined in porous materials: role of adsorption and unfreezable threshold[J]. Acta Geotechnica, 2018(6): 1-11.
      [13]
      ZHANG C, LOU Z, DENG P. Contact angle of soil minerals: A molecular dynamics study[J]. Computers & Geotechnics, 2016, 75: 48-56.
      [14]
      张陶娜, 徐雪雯, 董亮, 等. 分子动力学方法模拟不同温度下铀酰在叶腊石上的吸附和扩散行为[J]. 物理化学学报, 2017(10): 2013-2021. https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201710016.htm

      ZHANG Tao-na, XU Xue-wen, DONG Liang, et al. The adsorption and diffusion behaviors of uranyl on pyrophyllite at different temperatures: Molecular dynamics simulatons[J]. Acta Physico-Chemica Sinica, 2017(10): 2013-2021. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201710016.htm
      [15]
      GREATHOUSE J A, CYGAN R T. Water structure and aqueous uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite:  results from molecular simulations[J]. Environmental Science & Technology, 2006, 40(12): 3865.
      [16]
      KERISIT S, LIU C. Molecular dynamics simulations of uranyl and uranyl carbonate adsorption at aluminosilicate surfaces[J]. Environmental Science & Technology, 2014, 48(7): 3899.
      [17]
      ZHENG Y, ZAOUI A, SHAHROUR I. A theoretical study of swelling and shrinking of hydrated Wyoming montmorillonite[J]. Applied Clay Science, 2011, 51(1/2): 177-181.
      [18]
      VALLET V, WAHLGREN U, SCHIMMELPFENNIG B, et al. Solvent effects on uranium(VI) fluoride and hydroxide complexes studied by EXAFS and quantum chemistry[J]. Inorganic Chemistry, 2001, 40(14): 3516-3525. doi: 10.1021/ic001405n
      [19]
      RANDALL T C, LIANG J J, KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. Journal of Physical Chemistry B, 2004, 108(4): 1255-1266. doi: 10.1021/jp0363287
      [20]
      GUILBAUD P, WIPFF G. Hydration of UO[sub 2[sup 2+]] cation and its NO[sub 3][sup [minus]] and 18-crown-6 adducts studied by molecular dynamics simulations[J]. Journal of Physical Chemistry, 1993, 97(21): 5685-5692.
      [21]
      GREATHOUSE J A, CYGAN R T. Molecular dynamics simulation of uranyl(VI) adsorption equilibria onto an external montmorillonite surface[J]. Physical Chemistry Chemical Physics, 2005, 7(20): 3580.
      [22]
      LIU X Y, WANG L H, ZHENG Z, et al. Molecular dynamics simulation of the diffusion of uranium species in clay pores[J]. Journal of Hazardous Materials, 2013, 244/245(2): 21.
      [23]
      YANG W, ZAOUI A. Behind adhesion of uranyl onto montmorillonite surface: a molecular dynamics study[J]. Journal of Hazardous Materials, 2013, 261(20): 224.
      [24]
      KELLY S D, KEMNER K M, BROOKS S C. X-ray absorption spectroscopy identifies calcium-uranyl-carbonate complexes at environmental concentrations[J]. Geochimica Et Cosmochimica Acta, 2007, 71(4): 821-834.
      [25]
      ALLEN P G, BUCHER J J, CLARK D L, et al. Multinuclear NMR, Raman, EXAFS, and X-ray diffraction studies of uranyl carbonate complexes in near-neutral aqueous solution. X-ray structure of[C(NH2)3]6[(UO2)3(CO3)6][J]. Inorganic Chemistry, 1995, 34(19): 4797-4807.
      [26]
      MONTROLL E W, LEBOWITZ J L. The Liquid State of Matter: Fluids, Simple and Complex[M]. New York: North-Holland Pub. Co, 1982: 521.
    • Related Articles

      [1]CHEN Wensheng, LIU Cheng, XU Bin, YIN Pingbao. Torque sum method for slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 645-651. DOI: 10.11779/CJGE20231182
      [2]Study on the net buoyancy dissipation characteristics of synchronous grouting in shield tunnels and its effect on segment floating[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240857
      [3]XUE Demin, LI Tianbin, ZHANG Shuai. Method for calculating landslide thrusts behind double-row piles based on displacement control[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1979-1986. DOI: 10.11779/CJGE20220687
      [4]MU Lin-long, WANG Le, HUANG Mao-song, HE Yan-cheng, KANG Jing-wen. Experimental study on influences of leakage of confined water on buoyancy of underground structures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 769-774. DOI: 10.11779/CJGE201904022
      [5]ZHU Li-yuan, LI Zhong-hua, XU Lian-man. Measuring stress and strength of coal by drilling cutting torque method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2096-2102. DOI: 10.11779/CJGE201411016
      [6]NI Wei-jie, ZHU Bin, CHEN Ren-peng, ZHOU Jian, HUANG Bo. Tests and methods for buoyancy of pipelines in backfill soft clay[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 569-573. DOI: 10.11779/CJGE201403021
      [7]Bearing behaviors and nonlinear theory of pile groups subjected to torque[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5).
      [8]Cutting torque during tunnelling process of earth pressure balance shield machine in homogeneous ground[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1).
      [9]MEI Guoxiong, SONG Linhui, ZAI Jinmin. Experimental study on reduction of groundwater buoyancy[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1476-1480.
    • Cited by

      Periodical cited type(8)

      1. 赵凯,黄昕,谢良甫,王建虎,晋智毅. 软土盾构掘进竖向姿态分析及控制策略研究. 矿业科学学报. 2025(02): 259-270 .
      2. 秦大伟. 上软下硬地层盾构施工设备选型与刀盘关键参数研究. 铁道建筑技术. 2024(02): 59-63 .
      3. 李玉梅,段浚龙,贾文宪,兰浩,钟一夫. 大直径泥水盾构刀盘扭矩和推力分析与计算. 建筑机械化. 2024(08): 42-46 .
      4. 邓立营,王小永,徐飞,谢宝玲,吴昊. 超大直径土压盾构刀盘载荷工况分析与结构优化. 机械设计. 2023(05): 70-77 .
      5. 王伯芝,陈文明,黄永亮,丁爽,谢浩,胡婧,刘学增. 基于集成Dropout-DNN模型的盾构掘进速度预测方法. 科学技术与工程. 2023(17): 7558-7565 .
      6. 陈明江,黄政,王清扬,林赉贶. 盾构刀盘仿真分析中掘进载荷施加方法研究. 建筑机械化. 2023(08): 39-42 .
      7. 张瑞鑫. 土压平衡盾构机实时判别土仓内渣土堵塞的方法研究. 铁道建筑技术. 2022(11): 38-42 .
      8. 李雪,吴九七,郭庆飞,向乔,耿凤娟. 基于量纲理论的盾构掘进总推力计算模型. 地下空间与工程学报. 2022(S2): 573-577 .

      Other cited types(4)

    Catalog

      Article views (373) PDF downloads (250) Cited by(12)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return