• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Feng-xi, WANG Li-ye, LAI Yuan-ming. One-dimensional creep tests and model studies on saturated saline soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 142-149. DOI: 10.11779/CJGE202001016
Citation: ZHOU Feng-xi, WANG Li-ye, LAI Yuan-ming. One-dimensional creep tests and model studies on saturated saline soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 142-149. DOI: 10.11779/CJGE202001016

One-dimensional creep tests and model studies on saturated saline soil

More Information
  • Received Date: February 25, 2019
  • Available Online: December 07, 2022
  • The physical and chemical interaction between soil particles and pore salt solutions in saturated saline soils has a strong influence on the mechanical behavior of soils, which makes the saline soils exhibit different deformation characteristics. In order to accurately describe this interaction of saturated saline soil, the experimental studies on the remolded specimens saturated with distilled water, sodium sulfate solution and sodium chloride solution are carried out by the conventional oedometer tests and constant load creep tests. The test results show that there is a significant difference in the consolidation creep between saline soils and non-saline soils. This phenomenon is more obvious with the increase of salt content. The consolidation creep effect of sulphate soils and chloride soils with the same salt content is different. Secondly, based on the Yin-Graham one-dimensional creep equation, a one-dimensional creep theoretical model for saturated saline soils is established by using the Pitzer ion interaction model and the van't Hoff osmotic suction equation and introducing the effective osmotic stress. Finally, the improved theoretical model and experimental data are compared and analyzed. The results show that the proposed theoretical model can describe the chemical-mechanical coupling in saturated saline soils and effectively predict the one-dimensional creep behavior.
  • [1]
    陈耀光, 杨军, 彭芝平, 等. 饱和盐渍土地基处理孔隙水压力实测分析[J]. 岩土工程学报, 2010, 32(增刊2): 529-532. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S2130.htm

    CHEN Yao-guang, YANG Jun, PENG Zhi-ping, et al. Test analysis on pore water pressure in ground treatment to saturated saline soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 529-532. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S2130.htm
    [2]
    牛富俊, 林战举, 鲁嘉濠, 等. 青藏铁路路桥过渡段沉降变形影响因素分析[J]. 岩土力学, 2011, 32(增刊2): 372-377.

    NIU Fu-jun, LIN Zhan-ju, LU Jia-hao, et al. Study of the influencing factors of roadbed settlement in embankment-bridge transition section along Qinghai-Tibet Railway[J]. Rock and Soil Mechanics, 2011, 32(S2): 372-377. (in Chinese)
    [3]
    BING Hui, ZHANG Ying, MA min. Impact of desalination on physical and mechanical properties of lanzhou loess[J]. Eurasian Soil Science, 2017, 50(12): 1444-1449. doi: 10.1134/S1064229317130014
    [4]
    张云, 薛禹群, 施小清, 等. 饱和砂性土非线性蠕变模型试验研究[J]. 岩土力学, 2005, 26(12): 1869-1873. doi: 10.3969/j.issn.1000-7598.2005.12.001

    ZHANG Yun, XUE Yu-qun, SHI Xiao-qing, et al. Study on nonlinear creep model for saturated sand[J]. Rock and Soil Mechanics, 2005, 26(12): 1869-1873. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.12.001
    [5]
    袁静, 龚晓南, 益德清. 岩土流变模型的比较研究[J]. 岩石力学与工程学报, 2001, 20(6): 772-779. doi: 10.3321/j.issn:1000-6915.2001.06.004

    YUAN Jing, GONG Xiao-nan, YI De-qing. Comparison study on rheological constitutive models[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(6): 772-779. (in Chinese) doi: 10.3321/j.issn:1000-6915.2001.06.004
    [6]
    尹振宇. 天然软黏土的弹黏塑性本构模型:进展及发展[J]. 岩土工程学报, 2011, 33(9): 1357-1369.

    YIN Zhen-yu. Elastic viscoplastic models for natural soft clay: review and development[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1357-1369. (in Chinese)
    [7]
    YIN J H, GRAHAM J. Equivalent times and one-dimensional elastic viscoplastic modelling of time-dependent stress-strain behaviour of clays[J]. Revue Canadienne De Géotechnique, 1994, 31(1): 42-52. doi: 10.1139/t94-005
    [8]
    YIN J H, GRAHAM J. Elastic viscoplastic modelling of the time-dependent stress-strain behaviour of soils[J]. Canadian Geotechnical Journal, 1999, 36(4): 736-745. doi: 10.1139/t99-042
    [9]
    YIN J H, ZHU J G, GRAHAM J. A new elastic viscoplastic model for time-dependent behaviour of normally and overconsolidated clays: theory and verification[J]. Canadian Geotechnical Journal, 2002, 39(1): 157-173. doi: 10.1139/t01-074
    [10]
    NIXON J F, LEM G. Creep and strength testing of frozen saline fine-grained soils[J]. Canadian Geotechnical Journal, 1984, 21(3): 518-529. doi: 10.1139/t84-054
    [11]
    OGATA N, YASUDA M, KATAOKA T. Effects of salt concentration on strength and creep behavior of artificially frozen soils[J]. Cold Regions Science & Technology, 1983, 8(2): 139-153.
    [12]
    WIJEWEERA H, JOSHI R C. Creep behavior of saline fine-grained frozen soil[J]. Journal of Cold Regions Engineering, 1993, 7(3): 77-89. doi: 10.1061/(ASCE)0887-381X(1993)7:3(77)
    [13]
    WITTEVEEN , Ferrari , Laloui . An experimental and constitutive investigationon the chemo-mechanical; behaviour of a clay[J]. Géotechnique, 2013, 63(3): 244-255. doi: 10.1680/geot.SIP13.P.027
    [14]
    颜荣涛, 赵续月, 于明波, 等. 盐溶液饱和黏土的等向压缩特性[J]. 岩土力学, 2018, 39(1): 129-138.

    YAN Rong-tao, ZHAO Xu-yue, YU Ming-bo, et al. Isotropic compression characteristics of clayey soil saturated by salty solution[J]. Rock & Soil Mechanics, 2018, 39(1): 129-138. (in Chinese)
    [15]
    BARBOUR S L, FREDLUND D G. Mechanisms of osmotic flow and volume change in clay soils[J]. Canadian Geotechnical Journal, 1989, 26(4): 551-562.
    [16]
    SHIVANANDA S M R P. Role of osmotic suction in swelling of salt-amended clays[J]. Canadian Geotechnical Journal, 2005, 42(1): 307-315.
    [17]
    RAO S M, THYAGARAJ T. Swell-compression behaviour of compacted clays under chemical gradients[J]. Canadian Geotechnical Journal, 2007, 44(5): 520-532.
    [18]
    XU Y F, XIANG G S, JIANG H, et al. Role of osmotic suction in volume change of clays in salt solution[J]. Applied Clay Science, 2014, 101: 354-361.
    [19]
    邴慧, 武俊杰, 邓津. 黄土状盐渍土洗盐前后物理力学性质的变化[J]. 冰川冻土, 2011, 33(4): 796-800.

    BING Hui, WU Jun-jie, DENG Jin. Variations of physical and mechanical properties of saline loess before and after desalting[J]. Journal of Glaciology & Geocryology, 2011, 33(4): 796-800. (in Chinese)
    [20]
    土工试验方法标准:GB/T 50123—1999[S]. 1999.

    Standard for Soil Test Method: GB/T 50123—1999[S]. Beijing: China Planning Press, 1999. (in Chinese)
    [21]
    SUN D A, CUI H, SUN W. Swelling of compacted sand-bentonite mixtures[J]. Applied Clay Science, 2009, 43(3/4): 485-492.
    [22]
    PITZER K S. Thermodynamics of electrolytes: I theoretical basis and general equations[J]. Journal of Physical Chemistry, 1972, 77(2): 268-277.
    [23]
    PITZER K S, MAYORGA G. Thermodynamics of electrolytes: II activity and osmotic coefficients for strong electrolytes with one or both ions univalent[J]. Journal of Physical Chemistry, 1973, 77(19): 2300-2308.
    [24]
    FREDLUND D G, RAHARDJO H. Soil Mechanics for Unsaturated Soils[M]. New York: John Wiley & Sons, 1993.
    [25]
    KIM H T, JR W J F. Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25. Degree. C. 1. single salt parameters[J]. Journal of Chemical & Engineering Data, 1988, 33(2): 177-184.
  • Cited by

    Periodical cited type(3)

    1. 何风贞,李桂臣,阚甲广,许兴亮,冯晓巍,孙元田. 岩石多尺度损伤研究进展. 煤炭科学技术. 2024(10): 33-53 .
    2. 刘嘉,薛熠,高峰,滕腾,梁鑫. 层理页岩水力裂缝扩展规律的相场法研究. 岩土工程学报. 2022(03): 464-473 . 本站查看
    3. 熊祎滢,刘春,刘恒,唐超,周泽栖. 水力耦合作用下岩体破坏现状分析. 四川建筑. 2022(04): 210-212 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return