• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Zhe, WU Shu-wei, YAO Wang-jing, ZHANG Kai-wei, LI Qiang, XU Si-fa. Grinding pile technology of shield tunnels crosssing pile foundation of existing bridges[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 117-125. DOI: 10.11779/CJGE202001013
Citation: WANG Zhe, WU Shu-wei, YAO Wang-jing, ZHANG Kai-wei, LI Qiang, XU Si-fa. Grinding pile technology of shield tunnels crosssing pile foundation of existing bridges[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 117-125. DOI: 10.11779/CJGE202001013

Grinding pile technology of shield tunnels crosssing pile foundation of existing bridges

More Information
  • Received Date: March 03, 2019
  • Available Online: December 07, 2022
  • Based on the construction requirements of the shield tunnel crossing 6 large-diameter bridge piles of Fengqi bridge in the section of Jianguo Road Station-Zhonghe Road Station of Hangzhou Metro Line 2, the cutter type is selected according to the characteristics of soft soils and large-diameter piles. The angle of shell cutter is designed by the Advant Edge FEM finite element software, and the arrangement of the cutter layout is studied. The results show that for the shell cutter composed of double edges, zero back angle and negative front angle and combined with advance cutter and scraper, the layout of the concentric circle with three-section height difference and three-dimensional cutter is the most effective in cutting piles. Then the results are applied to the improvement of shield cutter head. The settlement of bridge deck is monitored during the shield driving process. The monitoring results show that the cumulative settlement of bridge deck in the cross-river section during shield grinding piles is only -3.09 mm, which has no obvious influence on the Fengqi bridge and river. The cutting steel bar is effective except that the cutter is worn on a few parts. This technology has been successfully applied to the grinding piles of Fengqi bridge of Hangzhou Metro Line 2, which may provide insights for the similar grinding pile projects.
  • [1]
    王梦恕. 21世纪是隧道及地下空间大发展的年代[J]. 岩土工程界, 2000(6): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS200006036.htm

    WANG Meng-shu. The 21st century is an era of great development of tunnels and underground space[J]. Geotechnical Engineering, 2000(6): 13-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS200006036.htm
    [2]
    张志强, 何川. 深圳地铁隧道邻接桩基施工力学行为研究[J]. 岩土工程学报, 2004, 25(2): 204-207.

    ZHANG Zhi-qiang, HE chuan. Research on mechanical behavior of adjacent pile foundation construction of Shenzhen metro tunnel[J]. Chinese Journal of Geotechnical Engineering, 2004, 25(2): 204-207. (in Chinese)
    [3]
    YAO A, YANG X, DONG L. Numerical analysis of the influence of isolation piles in metro tunnel construction of adjacent buildings[J]. Procedia Earth and Planetary Science, 2012, 5: 150-154. doi: 10.1016/j.proeps.2012.01.026
    [4]
    徐前卫, 朱合华, 马险峰, 等. 地铁盾构隧道穿越桥梁下方群桩基础的托换与除桩技术研究[J]. 岩土工程学报, 2012, 34(7): 1217-1226.

    XU Qian-wei, ZHU He-hua, MA Xian-feng, et al. Research on pile support and pile removal technology of shield tunnel crossing under bridge[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1217-1226. (in Chinese)
    [5]
    王飞, 袁大军, 董朝文, 等. 盾构直接切削大直径钢筋混凝土桩基试验研究[J]. 岩石力学与工程学报, 2013, 32(12): 2566-2574.

    WANG Fei, YUAN Da-jun, DONG Chao-wen, et al. Test study of shield cutting large-diameter reinforced concrete piles directly[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2566-2574. (in Chinese)
    [6]
    WANG Z, ZHANG K, WEI G, et al. Field measurement analysis of the influence of double shield tunnel construction on reinforced bridge[J]. Tunnelling and Underground Space Technology, 2018, 81: 252-264. doi: 10.1016/j.tust.2018.06.018
    [7]
    藤丽. 盾构穿越地下障碍物的试验研究[J]. 建筑机械化, 2011, 32(10): 89-91. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJH201110045.htm

    TENG Li. Experimental studies on shield through underground obstacles[J]. Construction Mechanization, 2011, 32(10): 89-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJH201110045.htm
    [8]
    刘浩. 盾构直接切削大直径桩基的刀具选型设计研究[D]. 北京: 北京交通大学, 2014.

    LIU Hao. Study on Tool Selection and Design for Direct Cutting of Large Diameter Pile Foundation by Shield Tunneling[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese)
    [9]
    杨自华, 钟志全. 泥水盾构穿越桩基础掘进施工[J]. 建筑机械化, 2007, 28(9): 51-53. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJH200709016.htm

    YANG Zi-hua, ZHONG Zhi-quan. Construction of driving through pile foundation with slurry shield machine[J]. Construction Mechanization, 2007, 28(9): 51-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJH200709016.htm
    [10]
    符敏. 盾构穿越厂房切削钢筋混凝土桩基施工技术[J]. 建筑机械, 2010(7): 90-91. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJX201013028.htm

    FU Min. Shield-driven machine passed through foundation of factory building with construction technology of cutting reinforced concrete pile[J]. Construction Machinery, 2010(7): 90-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJX201013028.htm
    [11]
    王飞, 袁大军, 董朝文, 等. 盾构直接切削大直径群桩的刀具配置研究[J]. 土木工程学报, 2013, 46(12): 127-135.

    WANG Fei, YUAN Da-jun, DONG Chao-wen, et al. Study on cutter configuration for directly shield cutting of large-diameter piles[J]. China Civil Engineering Journal, 2013, 46(12): 127-135. (in Chinese)
    [12]
    丁郭. 钢轨铣—磨修复的实验模拟测试及切削性能研究[D]. 广州: 华南理工大学, 2018.

    DING Guo. Experimental Simulation Test and Cutting Performance Research of Rail Milling-grinding Repair[D]. Guangzhou: South China University of Technology, 2018. (in Chinese)
    [13]
    王飞. 盾构直接掘削大直径钢筋混凝土群桩研究[D]. 北京交通大学, 2014.

    WANG Fei. Study on Shield Cutting of Large Diameter Reinforced Concrete Piles Directly[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese)
    [14]
    陈刚, 陈忠富, 陶俊林, 等. 45钢动态塑性本构参量与验证[J]. 爆炸与冲击,2005, 25(5): 451-456. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200505009.htm

    CHENG Gang, CHENG Zhong-fu, TAO Jun-lin, et al. Dynamic plastic constitutive parameters and verification of 45 steel[J]. Explosion and Shock Waves, 2005, 25(5): 451-456. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200505009.htm
    [15]
    吴俊, 袁大军, 李兴高, 等. 盾构刀具磨损机理及预测分析[J]. 中国公路学报, 2017, 30(8): 109-116.

    WU Jun, YUAN Da-jun, LI Xing-gao, et al. Analysis on wear mechanism and prediction of shield cutter[J]. China Journal of Highway and Transpot, 2017, 30(8): 109-116. (in Chinese)
    [16]
    AMOUN S, SHARIFZADEH M, SHAHRIAR K, et al. Evaluation of tool wear in EPB tunneling of Tehran Metro, Line 7 Expansion[J]. Tunnelling and Underground Space Technology, 2017, 61: 233-246.
    [17]
    刘文华. 复合地层EPB盾构刀盘布刀规律研究[D]. 长沙: 中南大学, 2012.

    LIU Wen-hua. Cutter Arrangement of EPB Shield Cutterhead in Composite Strata[D]. Changsha: Central South University, 2012. (in Chinese)
  • Cited by

    Periodical cited type(9)

    1. 杨光. 波浪补偿钻探设备在海洋岩土工程勘察中的应用. 价值工程. 2024(12): 111-113 .
    2. 杨文保,朱恩赐,吴琪,陈国兴,卢艺静,蒋家卫. 基于BP神经网络的原状土阻尼比智能预测法. 哈尔滨工程大学学报. 2024(08): 1527-1533 .
    3. 郭婷婷,刘建民,杨宏智. 土动剪切模量比的不确定性对莱州湾近海海域深软场地地震动参数的影响. 地球物理学进展. 2023(04): 1765-1774 .
    4. 陈国兴,韩勇,梁珂. 徐州城区黏性土与粉土的动剪切模量与阻尼比特性. 岩土力学. 2023(S1): 163-172 .
    5. 宋丙辉,孙永福,宋玉鹏,周其坤,刘振纹,王琮,杜星. 辽东湾近海海底土小应变动力特性试验研究. 地震工程学报. 2022(03): 535-541 .
    6. 蔡玮良. 江苏大丰海域海洋黏性土动力特性试验研究. 地基处理. 2022(04): 303-308 .
    7. 王艳芳,顾伟杰,姜彦彬. 土体动剪切模量及其衰减特性现场试验研究. 世界地震工程. 2022(03): 144-152 .
    8. 周正龙,丁芷萱,刘杰,赵凯,梁珂,鹿庆蕊. 南海海域饱和粉土动剪切模量和阻尼比试验研究. 土木工程学报. 2022(S1): 227-233 .
    9. 李雨润,杨仲辰,张静娟,张峰玮,赵英涛. 重塑湖相软黏土动力特性试验研究. 地震工程与工程振动. 2021(06): 11-18 .

    Other cited types(5)

Catalog

    Article views (432) PDF downloads (232) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return