• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Lan-min. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 1-19. DOI: 10.11779/CJGE202001001
Citation: WANG Lan-min. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 1-19. DOI: 10.11779/CJGE202001001

Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes

More Information
  • Received Date: December 26, 2019
  • Available Online: December 07, 2022
  • The large-scale sliding disaster of the saturated low angle soil layer caused by the Palu Mw7.5 earthquake in Indonesia in 2018 has an important warning for the sliding flow triggered by liquefaction of loess deposit during earthquakes in the loess areas. To study the mechanism of large-scale sliding with low slope angle triggered by the liquefaction of the loess deposit during earthquakes, a series of field investigations, in situ tests including SPT and shear velocity tests, dynamic triaxial tests, and SEM tests are conducted based on the in-depth analysis of typical earthquake-induced liquefaction disasters in loess areas. The characteristics and mechanisms of liquefaction of the saturated loess are revealed. The simplified and detailed evaluation methods for the liquefaction of saturated loess sites are proposed. Moreover, on the basis of numerical simulation and theory analysis, the sliding conditions, kinematics and dynamic characteristics of the large-scale sliding flow triggered by the liquefaction of loess deposit during earthquakes are studied. The mechanism of the large-scale sliding of loess deposit is expounded. The prediction model for the sliding distance and disaster range of the large-scale sliding flow triggered by the liquefaction of loess deposit during earthquakes is constructed. The probabilistic risk assessment method for the liquefaction sliding disasters is proposed, and the risk zoning maps of the large-scale sliding flow triggered by the liquefaction of loess deposit with different exceedance probabilities in the Loess Plateau are compiled. Besides, the passive and active prevention methods as well as the comprehensive monitoring and early warning methods are proposed. The results may provide a theoretical basis for the risk assessment, prevention and mitigation of the large-scale sliding flow triggered by liquefaction of loess deposit during earthquakes in the loess regions.
  • [1]
    SASSA S, TAKAGAWA T. Liquefied gravity flow-induced tsunami: first evidence and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters[J]. Landslides, 2019, 16(1): 195-200. doi: 10.1007/s10346-018-1114-x
    [2]
    BRADLEY K, MALLICK R, ANDIKAGUMI , et al. Earthquake- triggered 2018 Palu Valley landslides enabled by wet rice cultivation[J]. Nature Geoscience, 2019(12): 935-939.
    [3]
    WATKINSON I M, HALL R. Impact of communal irrigation on the 2018 Palu earthquake-triggered landslides[J]. Nature Geoscience, 2019(12): 940-945.
    [4]
    JEFFERSON I F, EVSTATIEV D, KARASTANEV D, et al. Engineering geology of loess and loess-like deposits: a commentary on the russian literature[J]. Engineering Geology, 2003, 68(3/4): 333-351.
    [5]
    王兰民. 黄土动力学[M]. 北京: 地震出版社, 2003.

    WANG Lan-min. Loess Dynamics[M]. Beijing: Seismological Press, 2003. (in Chinese)
    [6]
    赵晋泉, 张大卫, 高树义, 等. 1303年山西洪洞8级大地震郇堡地滑之研究[J]. 山西地震, 2003(3): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ200303006.htm

    ZHAO Jin-quan, ZHANG Da-wei, GAO Shu-yi, et al. Huanbu ground slide, the relic of 1303 Hongtong, Shanxi, earthquake of M8[J]. Earthquake Research in Shanxi, 1995(3): 17-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ200303006.htm
    [7]
    苏宗正, 时振梁. 1695年临汾地震震害及有关问题[J]. 山西地震, 1995(3/4): 150-158, 169. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ5Z1.027.htm

    SU Zong-zheng, SHI Zhen-liang. Study and discussion for the historical documents of Linfen Macroquake in 1695[J]. Earthquake Research in Shanxi, 1995(3/4): 150-158, 169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ5Z1.027.htm
    [8]
    HWANG H, WANG L M, YUAN Z H. Comparison of liquefaction potential of loess in Lanzhou, China, and Memphis, USA[J]. Soil Dynamics and Earthquake Engineering, 2000, 20(5): 389-395.
    [9]
    白铭学, 张苏民. 高烈度地震时黄土地层的液化滑移[J]. 工程勘察, 1990, 20(6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC199006000.htm

    BAI Ming-xue, ZHANG Su-min. Loess liquefaction flow in high intensity earthquake[J]. Geotechnical Investigation and Surveying, 1990, 20(6): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC199006000.htm
    [10]
    ISHIHARA K, OKUSA S, OYAGI N, et al. Liquefaction- induced flow slide in the collapsible loess deposit in soviet Tajik[J]. Soils and Foundations, 1990, 30(4): 73-89. doi: 10.3208/sandf1972.30.4_73
    [11]
    王谦, 王兰民, 袁中夏, 等. 汶川地震中甘肃清水田川黄土液化的试验研究[J]. 水文地质工程地质, 2012, 39(2): 116-120. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201202026.htm

    WANG Qian, WANG Lan-min, YUAN Zhong-xia, et al. Experimental study on liquefaction of Qingchuan Tianchuan loess in Wenchuan Earthquake[J]. Hydrogeology and Engineering Geology, 2012, 39(2): 116-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201202026.htm
    [12]
    徐舜华, 吴志坚, 孙军杰, 等. 岷县漳县6.6级地震典型滑坡特征及其诱发机制[J]. 西北地震学报, 2013, 35(3): 471-476. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201303014.htm

    XU Shun-hua, WU Zhi-jian, SUN Jun-jie, et al. Study of the characteristics and inducing mechanism of typical earthquake landslides of the Minxian-Zhangxian Ms6.6 earthquake[J]. China Earthquake Engineering Journal, 2013, 35(3): 471-476. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201303014.htm
    [13]
    王兰民, 刘红玫, 李兰, 等. 饱和黄土液化机理与特性的试验研究[J]. 岩土工程学报, 2000, 22(1): 89-94. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200001015.htm

    WANG Lan-min, LIU Hong-mei, LI Lan. Laboratory study on the mechanism and behaviors of saturated loess liquefaction[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 89-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200001015.htm
    [14]
    WANG L M, HE K M, SHI Y C, et al. Study on liquefaction of saturated loess by in-situ explosion test[J]. Earthquake Engineering and Engineering Vibration, 2002, 1(1): 50-56.
    [15]
    WANG S Y, LUNA R. Compressibility characteristics of low-plasticity silt before and after liquefaction[J]. Journal of Materials in Civil Engineering, 2014, 26(6): 040140141-1-6.
    [16]
    邓龙胜, 范文, 贺龙鹏. 随机地震荷载作用下黄土的液化特性[J]. 岩石力学与工程学报, 2012, 31(6): 1274-1280. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201206025.htm

    DENG Long-sheng, FAN Wen, HE Long-peng. Liquefaction property of seismic loess under stochastic load[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1274-1280. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201206025.htm
    [17]
    PRAKASH S, PURI V K. Liquefaction of loessial soils[C]//Anon Proc of Third International Conference on Seismic Microzonation, Seattle, Wash, 1982: 1101-1107.
    [18]
    杨振茂, 赵成刚, 王兰民, 等. 饱和黄土液化及其理论研究现状[J]. 土木工程学报, 2003, 36(11): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200311008.htm

    YANG Zhen-mao, ZHAO Cheng-gang, WANG Lan-min, et al. Current status of saturated loess liquefaction and its theoretical research[J]. China Civil Engineering Journal, 2003, 36(11): 38-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200311008.htm
    [19]
    王平, 王兰民, 王谦, 等. 饱和原状Q3黄土液化应变发展试验研究[J]. 岩土工程学报, 2013, 35(增刊1): 328-333. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S1055.htm

    WANG Ping, WANG Lan-min, WANG Qian, et al. Experimental study on liquefaction strain development of saturated Q3 loess[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 328-333. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S1055.htm
    [20]
    LIU C, SHI B, ZHOU J. Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: Application on SEM images of clay materials[J]. Applied Clay Science, 2011, 54(1): 97-106.
    [21]
    LIU C, TANG C, SHI B, et al. Automatic quantification of crack patterns by image processing[J]. Computers and Geosciences, 2013, 57: 77-80.
    [22]
    建筑抗震设计规范:GB50011—2010[S]. 北京: 中国建筑工业出版社, 2010.

    Code for Seismic Design of Building: GB50011—2010[S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
    [23]
    王兰民, 袁中夏, 汪国烈. 饱和黄土场地液化的工程初判和详判指标与方法研究[J]. 地震工程学报, 2013, 35(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201301002.htm

    WANG Lan-min, YUAN Zhong-xia, WANG Guo-lie. Study on initial judgment and detailed judgment index and method of liquefaction of saturated loess site[J]. Journal of Earthquake Engineering, 2013, 35(1): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201301002.htm
    [24]
    董林, 王峻, 夏坤, 等. 我国标贯液化判别方法对黄土适用性研究[J]. 地震工程与工程振动, 2013, 33(2): 209-213. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201302027.htm

    DONG Lin, WANG Jun, XIA Kun, et al. Study on the applicability of China's standard liquefaction discrimination method to loess[J]. Earthquake Engineering and Engineering Vibration, 2013, 33(2): 209-213. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201302027.htm
    [25]
    甘肃省地方标准建筑抗震设计规程:DB62/T25—3055—2011[S]. 2012.

    Specification for Seismic Design of Buildings in Gansu Province: DB62/T25—305502011[S]. 2011. (in Chinese)
    [26]
    地下结构抗震设计标准:GB/T51336—2018[S]. 2018.

    Standard for seismic design of underground structures GB/T51336—2018[S]. 2018. (in Chinese)
    [27]
    王谦, 王峻, 王兰民, 等. 石碑塬饱和黄土地震液化机制探讨[J]. 岩石力学与工程学报, 2014, 33(增刊2): 4168-4173. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2097.htm

    WANG Qian, WANG Jun, WANG Lan-min, et al. Discussion on mechanism of seismic liquefaction of sturation loess in Shibei Tableland, Guyuan City[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 4168-4173. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2097.htm
    [28]
    张晓超. 地震诱发石碑塬低角度黄土滑坡形成机理的试验研究[D]. 成都: 成都理工大学, 2015.

    ZHANG Xiao-chao. Experimental Study on the Formation Mechanism of Low Angle Loess Landslide Induced by Earthquake[D]. Chengdu: Chengdu University of Technology, 2015. (in Chinese)
    [29]
    张晓超, 黄润秋, 许模, 等. 石碑塬滑坡黄土液化特征及其影响因素研究[J]. 岩土力学, 2014, 35(3): 801-810. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403032.htm

    ZHANG Xiao-chao, HUANG Run-qiu, XU Mo, et al. Loess liquefaction characteristics and its influential factors of Shibeiyuan landslide[J]. Rock and Soil Mechanics, 2014, 35(3): 801-810. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403032.htm
    [30]
    师伟雄, 张子东, 高和新, 等. 饱和黄土液化后强度与变形特性的试验研究[J]. 地震工程学报, 2016, 38(6): 922-928. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201606012.htm

    SHI Wei-xiong, ZHANG Zi-dong, GAO He-xin, et al. Experimental study on strength and deformation characteristics of saturated loess after liquefaction[J]. Journal of Seismological Engineering, 2016, 38(6): 922-928. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201606012.htm
    [31]
    袁丽侠. 宁夏西吉县低角高速远程黄土滑坡及其形成机理分析[J]. 防灾减灾工程学报, 2006(2): 219-223. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200602017.htm

    YUAN Li-xia. Analysis of long-distance loess landslide and its formation mechanism in Xiji County, Ningxia[J]. Journal of Disaster Prevention and Mitigation Engineering, 2006(2): 219-223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200602017.htm
    [32]
    国家地震局兰州地震研究所, 宁夏回族自治区地震队. 1920年海原大地震[M]. 北京: 地震出版社, 1980.

    State Seismological Bureau, Lanzhou Institute of Seismology, Seismological Team of Ningxia Hui Autonomous Region. The Haiyuan Great Earthquake in 1920[M]. Beijing: Seismological Press, 1980. (in Chinese)
    [33]
    朱海之, 王立功, 高清武, 等. 下辽河地区砂土液化形成的震害地质问题[J]. 地震地质, 1979(2): 69-75, 100. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ197902006.htm

    ZHU Hai-zhi, WANG Li-gong, GAO Qing-wu, et al. Seismic damage geological problems caused by sand liquefaction in Xialiaohe area[J]. Seismogeology, 1979(2): 69-75, 100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ197902006.htm
    [34]
    陈龙伟, 袁晓铭, 孙锐. 2011年新西兰Mw6.3地震液化及岩土震害述评[J]. 世界地震工程, 2013(3): 3-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201303001.htm

    CHEN Long-wei, YUAN Xiao-ming, SUN Rui. Review of liquefaction and geotechnical earthquake damage of Mw6.3 earthquake in New Zealand in 2011[J]. World Earthquake Engineering, 2013(3): 3-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201303001.htm
    [35]
    WANG L M, WANG N, WANG Q. Prediction of sliding distance of seismic landslides in Loess Plateau, China[J]. Japanese Geotechnical Society Special Publication, 2015, 32(2): 1177-1182.
    [36]
    于汐. 重大岩土工程风险评估基础理论研究[D]. 北京: 中国地震局工程力学研究所, 2018.

    YU Xi. Basic Theoretical Research on Risk Assessment of Major Geotechnical Engineering[D]. Beijing: Institute of Engineering Mechanics, China Earthquake Administration, 2018. (in Chinese)
    [37]
    邱丹丹. 基于多源数据融合的滑坡风险分析研究[D]. 武汉: 中国地质大学, 2017.

    QIU Dandan. Landslide Risk Analysis Based on Multi-source Data Fusion[D]. Wuhan: China University of Geosciences, 2017. (in Chinese)
    [38]
    李晓辉. 基于功效系数法的滑坡灾害危险性评估研究[D]. 武汉: 武汉理工大学, 2017.

    LI Xiao-hui. Study on Landslide Hazard Assessment Based on Efficacy Coefficient Method[D]. Wuhan: Wuhan University of Technology, 2017. (in Chinese)
    [39]
    何淑军. 陕西宝鸡市渭滨区地质灾害风险评估研究[D]. 北京: 中国地质科学院, 2009.

    HE Shu-jun. Study on Risk Assessment of Geological Disasters in Weibin District, Baoji City, Shaanxi Province[D]. Beijing: Chinese Academy of Geosciences, 2009. (in Chinese)
    [40]
    中国地震动参数区划图:GB 18306—2015[S]. 北京: 中国标准出版社, 2015.

    Seismic Ground Motion Parameter Zoning Map of China: GB 18306—2015[S]. Beijing: China Standard Press, 2015. (in Chinese)
    [41]
    曾瑞, 李榜晏, 朱立波, 等. 黄土高原地形地貌研究与海绵城市建设[J]. 绿色科技, 2017(1): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-LVKJ201701034.htm

    ZENG Rui, LI Bang-yan, ZHU Li-bo, et al. Landform research and sponge city construction on the Loess Plateau[J]. Green Technology, 2017(1): 74-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LVKJ201701034.htm
  • Cited by

    Periodical cited type(41)

    1. 侯瑞彬,潘逸尘,董云瑶,付宇廷,刘蒙蒙. 2023年甘肃积石山M_S6.2地震密集观测记录的区域性差异分析. 世界地震工程. 2025(02): 12-20 .
    2. 常晁瑜,乔峰,薄景山,绽蓓蕾,谷佳沛,李昊宇,田华俊. 甘肃积石山6.2级地震诱发中川乡流滑成因初探. 防灾减灾工程学报. 2025(02): 349-356 .
    3. 王兰民,许世阳,王平,王睿,车爱兰,周燕国,吴志坚,王谦,蒲小武,柴少峰,马星宇. 2023年积石山6.2级地震诱发大规模黄土液化流滑的特征与启示. 岩土工程学报. 2024(02): 235-243 . 本站查看
    4. 刘港,贾俊,张戈,洪勃,董英,裴赢,薛强,高波. 甘肃积石山地震液化型泥流特征、成因及其对黄河上游盆地地震次生灾害风险评估的启示. 西北地质. 2024(02): 220-229 .
    5. 王睿,王兰民,周燕国,王刚. 土动力学与岩土地震工程. 土木工程学报. 2024(07): 71-89+105 .
    6. 潘建磊,梁庆国,刘海生,时伟,王丽丽. 黄土液化作用及其次生灾害风险评估方法初探——以积石山M_S6.2地震为例. 地震工程学报. 2024(04): 836-845 .
    7. 袁近远,崔家伟,李兆焱,袁晓铭,张钰洋. 中国模式下砾性土液化指数评价新方法. 土木工程学报. 2024(09): 98-108 .
    8. 葛一荀,张洁,黄宏伟. 基于贝叶斯分层模型的液化侧移稳健的易损性分析方法. 同济大学学报(自然科学版). 2024(11): 1658-1669 .
    9. 钱法桥,邓亚虹,刘凡,门欢. 黄土地震滑坡研究综述与展望. 中国地质灾害与防治学报. 2024(05): 5-20 .
    10. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 .
    11. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 .
    12. 代言,邓龙胜,毛伟,范文,李培. 马兰黄土液化特性及孔压模型参数研究. 地震工程学报. 2023(02): 338-345+361 .
    13. 隆然,刘兴东. 基于致灾机理分析的公路滑坡稳定性评价及治理方案研究. 铁道勘察. 2023(02): 33-37 .
    14. 贾科敏,许成顺,杜修力,张小玲,宋佳,苏卓林. 可液化倾斜场地的侧向扩展机制分析. 岩土力学. 2023(06): 1837-1848 .
    15. 罗增文,苏卓林,贾科敏,许成顺. 地震作用下碎石桩场地侧向位移规律研究. 震灾防御技术. 2023(02): 361-368 .
    16. 王兰民,柴少峰,薄景山,王平,许世阳,李孝波,蒲小武. 黄土地震滑坡的触发类型、特征与成灾机制. 岩土工程学报. 2023(08): 1543-1554 . 本站查看
    17. 李孝波,欧阳刚垒,宋霖君,吴义文,徐建元. 黄土高原地区场地设计反应谱特征周期研究. 地震工程学报. 2023(05): 1161-1170 .
    18. 柴少峰,王兰民,王平,郭海涛,夏晓雨,车高凤,王会娟. 石碑塬低角度黄土地层液化滑移特征与机理振动台试验研究. 岩土工程学报. 2023(12): 2565-2574 . 本站查看
    19. 马为功,王兰民,许世阳,李登科,柴少峰. 饱和黄土隧道围岩地震液化特征的振动台试验研究. 岩土工程学报. 2023(S2): 171-176 . 本站查看
    20. 李泊良,张帆宇. 降雨和地震条件下浅层黄土滑坡三维稳定性评价. 工程科学学报. 2022(03): 440-450 .
    21. 程超,钟秀梅,刘钊钊,刘富强,江志杰,王谦,陶冬旺. 饱和黄土动态液化和静态液化机理的差异性研究. 地震工程学报. 2022(01): 136-144 .
    22. 袁近远,李天宁,王兰民,汪云龙,陈龙伟,李兆焱,袁晓铭,王永志,陈卓识,李瑞山. 砂土液化概率计算新方法. 岩土工程学报. 2022(03): 541-549 . 本站查看
    23. 王谦,钟秀梅,高中南,马金莲,万秀红,杨义煊,刘岸果. 门源M6.9地震诱发地质灾害特征研究. 地震工程学报. 2022(02): 352-359 .
    24. 葛一荀,张洁,祝刘文,程小久,廖先斌,汪华安,孔明,郑文棠,王占华. 砂土场地国标与美标标准贯入试验能量分析及击数转换关系研究. 工程地质学报. 2022(02): 507-519 .
    25. 包含,马扬帆,兰恒星,彭建兵,张科科,许江波,晏长根,孙强. 基于微结构量化的含渐变带黄土各向异性特征研究. 中国公路学报. 2022(10): 88-99 .
    26. 苏卓林,贾科敏,许成顺,豆鹏飞,张小玲. 双向地震作用下液化水平和倾斜场地-桩基-桥梁结构地震反应的差异研究. 地震科学进展. 2022(11): 505-512 .
    27. 宋洋,刘思源,王晨炟. 含水率和干湿循环对原状黄土变形特性的影响. 辽宁工程技术大学学报(自然科学版). 2021(02): 148-155 .
    28. 王玉峰,林棋文,李坤,史安文,李天话,程谦恭. 高速远程滑坡动力学研究进展. 地球科学与环境学报. 2021(01): 164-181 .
    29. 颜灵勇,李孝波,欧阳刚垒. 黄土地震滑坡形成机理研究的若干进展. 防灾科技学院学报. 2021(02): 46-53 .
    30. 马星宇,王兰民,王谦,王平,钟秀梅,蒲小武,刘富强. 饱和黄土液化流动性试验研究. 岩土工程学报. 2021(S1): 161-165 . 本站查看
    31. 袁晓铭,费扬,陈龙伟,袁近远,陈同之,张思宇,王义德. 含剧烈地震动作用不同埋深砂土液化判别统一公式. 岩石力学与工程学报. 2021(10): 2101-2112 .
    32. 李旭东,王平,王丽丽,王会娟,常文斌,钱紫玲. 强震作用下坡顶建筑荷载对边坡稳定性影响研究. 地震工程学报. 2021(05): 1220-1227 .
    33. 张子东,张晓超,任鹏,崔雪婷. 非饱和黄土动力液化研究——以党家岔滑坡为例. 地震工程学报. 2021(05): 1228-1237 .
    34. 许成顺,贾科敏,杜修力,王志华,宋佳,张小玲. 液化侧向扩展场地-桩基础抗震研究综述. 防灾减灾工程学报. 2021(04): 768-791 .
    35. 马晓文,梁庆国,赵涛,周稳弟. 土动力学研究综述及思考. 世界地震工程. 2021(04): 217-230 .
    36. 许成顺,王冰,杜修力,岳冲,杨钰荣. 循环加载频率对砂土液化模式的影响试验研究. 土木工程学报. 2021(11): 109-118 .
    37. 郭海涛,许世阳,蒲小武,张晓军,马星宇. 海原地震石碑塬液化滑移地表特征形成机制探讨. 地震工程学报. 2020(05): 1159-1164 .
    38. 杨博,田文通,孙军杰,刘琨,徐舜华. 海原大地震诱发石碑塬黄土滑坡机制探讨. 地震工程学报. 2020(05): 1165-1172 .
    39. 马星宇,王兰民,钟秀梅,蒲小武,刘富强,王谦. 地震诱发石碑塬黄土地层液化滑移距离研究. 地震工程学报. 2020(06): 1674-1682 .
    40. 车福东,王涛,辛鹏,张泽林,梁昌玉,刘甲美. 近远震作用下黄土滑坡动力响应与变形——以甘肃天水震区黎坪村滑坡为例. 地质通报. 2020(12): 1981-1992 .
    41. MA Xingyu,WANG Lanmin,WANG Qian,WANG Ping,ZHONG Xiumei,PU Xiaowu,LIU Fuqiang,XU Xiaowei. Flow Characteristics of Large-Scale Liquefaction-Slip of the Loess Strata in Shibei Tableland, Guyuan City, Induced by the 1920 Haiyuan M8(1/2) Earthquake. Earthquake Research in China. 2020(04): 469-481 .

    Other cited types(32)

Catalog

    Article views (649) PDF downloads (954) Cited by(73)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return