Citation: | WANG Lan-min. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 1-19. DOI: 10.11779/CJGE202001001 |
[1] |
SASSA S, TAKAGAWA T. Liquefied gravity flow-induced tsunami: first evidence and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters[J]. Landslides, 2019, 16(1): 195-200. doi: 10.1007/s10346-018-1114-x
|
[2] |
BRADLEY K, MALLICK R, ANDIKAGUMI , et al. Earthquake- triggered 2018 Palu Valley landslides enabled by wet rice cultivation[J]. Nature Geoscience, 2019(12): 935-939.
|
[3] |
WATKINSON I M, HALL R. Impact of communal irrigation on the 2018 Palu earthquake-triggered landslides[J]. Nature Geoscience, 2019(12): 940-945.
|
[4] |
JEFFERSON I F, EVSTATIEV D, KARASTANEV D, et al. Engineering geology of loess and loess-like deposits: a commentary on the russian literature[J]. Engineering Geology, 2003, 68(3/4): 333-351.
|
[5] |
王兰民. 黄土动力学[M]. 北京: 地震出版社, 2003.
WANG Lan-min. Loess Dynamics[M]. Beijing: Seismological Press, 2003. (in Chinese)
|
[6] |
赵晋泉, 张大卫, 高树义, 等. 1303年山西洪洞8级大地震郇堡地滑之研究[J]. 山西地震, 2003(3): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ200303006.htm
ZHAO Jin-quan, ZHANG Da-wei, GAO Shu-yi, et al. Huanbu ground slide, the relic of 1303 Hongtong, Shanxi, earthquake of M8[J]. Earthquake Research in Shanxi, 1995(3): 17-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ200303006.htm
|
[7] |
苏宗正, 时振梁. 1695年临汾地震震害及有关问题[J]. 山西地震, 1995(3/4): 150-158, 169. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ5Z1.027.htm
SU Zong-zheng, SHI Zhen-liang. Study and discussion for the historical documents of Linfen Macroquake in 1695[J]. Earthquake Research in Shanxi, 1995(3/4): 150-158, 169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ5Z1.027.htm
|
[8] |
HWANG H, WANG L M, YUAN Z H. Comparison of liquefaction potential of loess in Lanzhou, China, and Memphis, USA[J]. Soil Dynamics and Earthquake Engineering, 2000, 20(5): 389-395.
|
[9] |
白铭学, 张苏民. 高烈度地震时黄土地层的液化滑移[J]. 工程勘察, 1990, 20(6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC199006000.htm
BAI Ming-xue, ZHANG Su-min. Loess liquefaction flow in high intensity earthquake[J]. Geotechnical Investigation and Surveying, 1990, 20(6): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC199006000.htm
|
[10] |
ISHIHARA K, OKUSA S, OYAGI N, et al. Liquefaction- induced flow slide in the collapsible loess deposit in soviet Tajik[J]. Soils and Foundations, 1990, 30(4): 73-89. doi: 10.3208/sandf1972.30.4_73
|
[11] |
王谦, 王兰民, 袁中夏, 等. 汶川地震中甘肃清水田川黄土液化的试验研究[J]. 水文地质工程地质, 2012, 39(2): 116-120. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201202026.htm
WANG Qian, WANG Lan-min, YUAN Zhong-xia, et al. Experimental study on liquefaction of Qingchuan Tianchuan loess in Wenchuan Earthquake[J]. Hydrogeology and Engineering Geology, 2012, 39(2): 116-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201202026.htm
|
[12] |
徐舜华, 吴志坚, 孙军杰, 等. 岷县漳县6.6级地震典型滑坡特征及其诱发机制[J]. 西北地震学报, 2013, 35(3): 471-476. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201303014.htm
XU Shun-hua, WU Zhi-jian, SUN Jun-jie, et al. Study of the characteristics and inducing mechanism of typical earthquake landslides of the Minxian-Zhangxian Ms6.6 earthquake[J]. China Earthquake Engineering Journal, 2013, 35(3): 471-476. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201303014.htm
|
[13] |
王兰民, 刘红玫, 李兰, 等. 饱和黄土液化机理与特性的试验研究[J]. 岩土工程学报, 2000, 22(1): 89-94. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200001015.htm
WANG Lan-min, LIU Hong-mei, LI Lan. Laboratory study on the mechanism and behaviors of saturated loess liquefaction[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 89-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200001015.htm
|
[14] |
WANG L M, HE K M, SHI Y C, et al. Study on liquefaction of saturated loess by in-situ explosion test[J]. Earthquake Engineering and Engineering Vibration, 2002, 1(1): 50-56.
|
[15] |
WANG S Y, LUNA R. Compressibility characteristics of low-plasticity silt before and after liquefaction[J]. Journal of Materials in Civil Engineering, 2014, 26(6): 040140141-1-6.
|
[16] |
邓龙胜, 范文, 贺龙鹏. 随机地震荷载作用下黄土的液化特性[J]. 岩石力学与工程学报, 2012, 31(6): 1274-1280. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201206025.htm
DENG Long-sheng, FAN Wen, HE Long-peng. Liquefaction property of seismic loess under stochastic load[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1274-1280. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201206025.htm
|
[17] |
PRAKASH S, PURI V K. Liquefaction of loessial soils[C]//Anon Proc of Third International Conference on Seismic Microzonation, Seattle, Wash, 1982: 1101-1107.
|
[18] |
杨振茂, 赵成刚, 王兰民, 等. 饱和黄土液化及其理论研究现状[J]. 土木工程学报, 2003, 36(11): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200311008.htm
YANG Zhen-mao, ZHAO Cheng-gang, WANG Lan-min, et al. Current status of saturated loess liquefaction and its theoretical research[J]. China Civil Engineering Journal, 2003, 36(11): 38-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200311008.htm
|
[19] |
王平, 王兰民, 王谦, 等. 饱和原状Q3黄土液化应变发展试验研究[J]. 岩土工程学报, 2013, 35(增刊1): 328-333. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S1055.htm
WANG Ping, WANG Lan-min, WANG Qian, et al. Experimental study on liquefaction strain development of saturated Q3 loess[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 328-333. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S1055.htm
|
[20] |
LIU C, SHI B, ZHOU J. Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: Application on SEM images of clay materials[J]. Applied Clay Science, 2011, 54(1): 97-106.
|
[21] |
LIU C, TANG C, SHI B, et al. Automatic quantification of crack patterns by image processing[J]. Computers and Geosciences, 2013, 57: 77-80.
|
[22] |
建筑抗震设计规范:GB50011—2010[S]. 北京: 中国建筑工业出版社, 2010.
Code for Seismic Design of Building: GB50011—2010[S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
|
[23] |
王兰民, 袁中夏, 汪国烈. 饱和黄土场地液化的工程初判和详判指标与方法研究[J]. 地震工程学报, 2013, 35(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201301002.htm
WANG Lan-min, YUAN Zhong-xia, WANG Guo-lie. Study on initial judgment and detailed judgment index and method of liquefaction of saturated loess site[J]. Journal of Earthquake Engineering, 2013, 35(1): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201301002.htm
|
[24] |
董林, 王峻, 夏坤, 等. 我国标贯液化判别方法对黄土适用性研究[J]. 地震工程与工程振动, 2013, 33(2): 209-213. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201302027.htm
DONG Lin, WANG Jun, XIA Kun, et al. Study on the applicability of China's standard liquefaction discrimination method to loess[J]. Earthquake Engineering and Engineering Vibration, 2013, 33(2): 209-213. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201302027.htm
|
[25] |
甘肃省地方标准建筑抗震设计规程:DB62/T25—3055—2011[S]. 2012.
Specification for Seismic Design of Buildings in Gansu Province: DB62/T25—305502011[S]. 2011. (in Chinese)
|
[26] |
地下结构抗震设计标准:GB/T51336—2018[S]. 2018.
Standard for seismic design of underground structures GB/T51336—2018[S]. 2018. (in Chinese)
|
[27] |
王谦, 王峻, 王兰民, 等. 石碑塬饱和黄土地震液化机制探讨[J]. 岩石力学与工程学报, 2014, 33(增刊2): 4168-4173. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2097.htm
WANG Qian, WANG Jun, WANG Lan-min, et al. Discussion on mechanism of seismic liquefaction of sturation loess in Shibei Tableland, Guyuan City[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 4168-4173. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2097.htm
|
[28] |
张晓超. 地震诱发石碑塬低角度黄土滑坡形成机理的试验研究[D]. 成都: 成都理工大学, 2015.
ZHANG Xiao-chao. Experimental Study on the Formation Mechanism of Low Angle Loess Landslide Induced by Earthquake[D]. Chengdu: Chengdu University of Technology, 2015. (in Chinese)
|
[29] |
张晓超, 黄润秋, 许模, 等. 石碑塬滑坡黄土液化特征及其影响因素研究[J]. 岩土力学, 2014, 35(3): 801-810. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403032.htm
ZHANG Xiao-chao, HUANG Run-qiu, XU Mo, et al. Loess liquefaction characteristics and its influential factors of Shibeiyuan landslide[J]. Rock and Soil Mechanics, 2014, 35(3): 801-810. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403032.htm
|
[30] |
师伟雄, 张子东, 高和新, 等. 饱和黄土液化后强度与变形特性的试验研究[J]. 地震工程学报, 2016, 38(6): 922-928. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201606012.htm
SHI Wei-xiong, ZHANG Zi-dong, GAO He-xin, et al. Experimental study on strength and deformation characteristics of saturated loess after liquefaction[J]. Journal of Seismological Engineering, 2016, 38(6): 922-928. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201606012.htm
|
[31] |
袁丽侠. 宁夏西吉县低角高速远程黄土滑坡及其形成机理分析[J]. 防灾减灾工程学报, 2006(2): 219-223. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200602017.htm
YUAN Li-xia. Analysis of long-distance loess landslide and its formation mechanism in Xiji County, Ningxia[J]. Journal of Disaster Prevention and Mitigation Engineering, 2006(2): 219-223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200602017.htm
|
[32] |
国家地震局兰州地震研究所, 宁夏回族自治区地震队. 1920年海原大地震[M]. 北京: 地震出版社, 1980.
State Seismological Bureau, Lanzhou Institute of Seismology, Seismological Team of Ningxia Hui Autonomous Region. The Haiyuan Great Earthquake in 1920[M]. Beijing: Seismological Press, 1980. (in Chinese)
|
[33] |
朱海之, 王立功, 高清武, 等. 下辽河地区砂土液化形成的震害地质问题[J]. 地震地质, 1979(2): 69-75, 100. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ197902006.htm
ZHU Hai-zhi, WANG Li-gong, GAO Qing-wu, et al. Seismic damage geological problems caused by sand liquefaction in Xialiaohe area[J]. Seismogeology, 1979(2): 69-75, 100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ197902006.htm
|
[34] |
陈龙伟, 袁晓铭, 孙锐. 2011年新西兰Mw6.3地震液化及岩土震害述评[J]. 世界地震工程, 2013(3): 3-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201303001.htm
CHEN Long-wei, YUAN Xiao-ming, SUN Rui. Review of liquefaction and geotechnical earthquake damage of Mw6.3 earthquake in New Zealand in 2011[J]. World Earthquake Engineering, 2013(3): 3-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201303001.htm
|
[35] |
WANG L M, WANG N, WANG Q. Prediction of sliding distance of seismic landslides in Loess Plateau, China[J]. Japanese Geotechnical Society Special Publication, 2015, 32(2): 1177-1182.
|
[36] |
于汐. 重大岩土工程风险评估基础理论研究[D]. 北京: 中国地震局工程力学研究所, 2018.
YU Xi. Basic Theoretical Research on Risk Assessment of Major Geotechnical Engineering[D]. Beijing: Institute of Engineering Mechanics, China Earthquake Administration, 2018. (in Chinese)
|
[37] |
邱丹丹. 基于多源数据融合的滑坡风险分析研究[D]. 武汉: 中国地质大学, 2017.
QIU Dandan. Landslide Risk Analysis Based on Multi-source Data Fusion[D]. Wuhan: China University of Geosciences, 2017. (in Chinese)
|
[38] |
李晓辉. 基于功效系数法的滑坡灾害危险性评估研究[D]. 武汉: 武汉理工大学, 2017.
LI Xiao-hui. Study on Landslide Hazard Assessment Based on Efficacy Coefficient Method[D]. Wuhan: Wuhan University of Technology, 2017. (in Chinese)
|
[39] |
何淑军. 陕西宝鸡市渭滨区地质灾害风险评估研究[D]. 北京: 中国地质科学院, 2009.
HE Shu-jun. Study on Risk Assessment of Geological Disasters in Weibin District, Baoji City, Shaanxi Province[D]. Beijing: Chinese Academy of Geosciences, 2009. (in Chinese)
|
[40] |
中国地震动参数区划图:GB 18306—2015[S]. 北京: 中国标准出版社, 2015.
Seismic Ground Motion Parameter Zoning Map of China: GB 18306—2015[S]. Beijing: China Standard Press, 2015. (in Chinese)
|
[41] |
曾瑞, 李榜晏, 朱立波, 等. 黄土高原地形地貌研究与海绵城市建设[J]. 绿色科技, 2017(1): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-LVKJ201701034.htm
ZENG Rui, LI Bang-yan, ZHU Li-bo, et al. Landform research and sponge city construction on the Loess Plateau[J]. Green Technology, 2017(1): 74-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LVKJ201701034.htm
|
1. |
侯瑞彬,潘逸尘,董云瑶,付宇廷,刘蒙蒙. 2023年甘肃积石山M_S6.2地震密集观测记录的区域性差异分析. 世界地震工程. 2025(02): 12-20 .
![]() | |
2. |
常晁瑜,乔峰,薄景山,绽蓓蕾,谷佳沛,李昊宇,田华俊. 甘肃积石山6.2级地震诱发中川乡流滑成因初探. 防灾减灾工程学报. 2025(02): 349-356 .
![]() | |
3. |
王兰民,许世阳,王平,王睿,车爱兰,周燕国,吴志坚,王谦,蒲小武,柴少峰,马星宇. 2023年积石山6.2级地震诱发大规模黄土液化流滑的特征与启示. 岩土工程学报. 2024(02): 235-243 .
![]() | |
4. |
刘港,贾俊,张戈,洪勃,董英,裴赢,薛强,高波. 甘肃积石山地震液化型泥流特征、成因及其对黄河上游盆地地震次生灾害风险评估的启示. 西北地质. 2024(02): 220-229 .
![]() | |
5. |
王睿,王兰民,周燕国,王刚. 土动力学与岩土地震工程. 土木工程学报. 2024(07): 71-89+105 .
![]() | |
6. |
潘建磊,梁庆国,刘海生,时伟,王丽丽. 黄土液化作用及其次生灾害风险评估方法初探——以积石山M_S6.2地震为例. 地震工程学报. 2024(04): 836-845 .
![]() | |
7. |
袁近远,崔家伟,李兆焱,袁晓铭,张钰洋. 中国模式下砾性土液化指数评价新方法. 土木工程学报. 2024(09): 98-108 .
![]() | |
8. |
葛一荀,张洁,黄宏伟. 基于贝叶斯分层模型的液化侧移稳健的易损性分析方法. 同济大学学报(自然科学版). 2024(11): 1658-1669 .
![]() | |
9. |
钱法桥,邓亚虹,刘凡,门欢. 黄土地震滑坡研究综述与展望. 中国地质灾害与防治学报. 2024(05): 5-20 .
![]() | |
10. |
袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 .
![]() | |
11. |
袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 .
![]() | |
12. |
代言,邓龙胜,毛伟,范文,李培. 马兰黄土液化特性及孔压模型参数研究. 地震工程学报. 2023(02): 338-345+361 .
![]() | |
13. |
隆然,刘兴东. 基于致灾机理分析的公路滑坡稳定性评价及治理方案研究. 铁道勘察. 2023(02): 33-37 .
![]() | |
14. |
贾科敏,许成顺,杜修力,张小玲,宋佳,苏卓林. 可液化倾斜场地的侧向扩展机制分析. 岩土力学. 2023(06): 1837-1848 .
![]() | |
15. |
罗增文,苏卓林,贾科敏,许成顺. 地震作用下碎石桩场地侧向位移规律研究. 震灾防御技术. 2023(02): 361-368 .
![]() | |
16. |
王兰民,柴少峰,薄景山,王平,许世阳,李孝波,蒲小武. 黄土地震滑坡的触发类型、特征与成灾机制. 岩土工程学报. 2023(08): 1543-1554 .
![]() | |
17. |
李孝波,欧阳刚垒,宋霖君,吴义文,徐建元. 黄土高原地区场地设计反应谱特征周期研究. 地震工程学报. 2023(05): 1161-1170 .
![]() | |
18. |
柴少峰,王兰民,王平,郭海涛,夏晓雨,车高凤,王会娟. 石碑塬低角度黄土地层液化滑移特征与机理振动台试验研究. 岩土工程学报. 2023(12): 2565-2574 .
![]() | |
19. |
马为功,王兰民,许世阳,李登科,柴少峰. 饱和黄土隧道围岩地震液化特征的振动台试验研究. 岩土工程学报. 2023(S2): 171-176 .
![]() | |
20. |
李泊良,张帆宇. 降雨和地震条件下浅层黄土滑坡三维稳定性评价. 工程科学学报. 2022(03): 440-450 .
![]() | |
21. |
程超,钟秀梅,刘钊钊,刘富强,江志杰,王谦,陶冬旺. 饱和黄土动态液化和静态液化机理的差异性研究. 地震工程学报. 2022(01): 136-144 .
![]() | |
22. |
袁近远,李天宁,王兰民,汪云龙,陈龙伟,李兆焱,袁晓铭,王永志,陈卓识,李瑞山. 砂土液化概率计算新方法. 岩土工程学报. 2022(03): 541-549 .
![]() | |
23. |
王谦,钟秀梅,高中南,马金莲,万秀红,杨义煊,刘岸果. 门源M6.9地震诱发地质灾害特征研究. 地震工程学报. 2022(02): 352-359 .
![]() | |
24. |
葛一荀,张洁,祝刘文,程小久,廖先斌,汪华安,孔明,郑文棠,王占华. 砂土场地国标与美标标准贯入试验能量分析及击数转换关系研究. 工程地质学报. 2022(02): 507-519 .
![]() | |
25. |
包含,马扬帆,兰恒星,彭建兵,张科科,许江波,晏长根,孙强. 基于微结构量化的含渐变带黄土各向异性特征研究. 中国公路学报. 2022(10): 88-99 .
![]() | |
26. |
苏卓林,贾科敏,许成顺,豆鹏飞,张小玲. 双向地震作用下液化水平和倾斜场地-桩基-桥梁结构地震反应的差异研究. 地震科学进展. 2022(11): 505-512 .
![]() | |
27. |
宋洋,刘思源,王晨炟. 含水率和干湿循环对原状黄土变形特性的影响. 辽宁工程技术大学学报(自然科学版). 2021(02): 148-155 .
![]() | |
28. |
王玉峰,林棋文,李坤,史安文,李天话,程谦恭. 高速远程滑坡动力学研究进展. 地球科学与环境学报. 2021(01): 164-181 .
![]() | |
29. |
颜灵勇,李孝波,欧阳刚垒. 黄土地震滑坡形成机理研究的若干进展. 防灾科技学院学报. 2021(02): 46-53 .
![]() | |
30. |
马星宇,王兰民,王谦,王平,钟秀梅,蒲小武,刘富强. 饱和黄土液化流动性试验研究. 岩土工程学报. 2021(S1): 161-165 .
![]() | |
31. |
袁晓铭,费扬,陈龙伟,袁近远,陈同之,张思宇,王义德. 含剧烈地震动作用不同埋深砂土液化判别统一公式. 岩石力学与工程学报. 2021(10): 2101-2112 .
![]() | |
32. |
李旭东,王平,王丽丽,王会娟,常文斌,钱紫玲. 强震作用下坡顶建筑荷载对边坡稳定性影响研究. 地震工程学报. 2021(05): 1220-1227 .
![]() | |
33. |
张子东,张晓超,任鹏,崔雪婷. 非饱和黄土动力液化研究——以党家岔滑坡为例. 地震工程学报. 2021(05): 1228-1237 .
![]() | |
34. |
许成顺,贾科敏,杜修力,王志华,宋佳,张小玲. 液化侧向扩展场地-桩基础抗震研究综述. 防灾减灾工程学报. 2021(04): 768-791 .
![]() | |
35. |
马晓文,梁庆国,赵涛,周稳弟. 土动力学研究综述及思考. 世界地震工程. 2021(04): 217-230 .
![]() | |
36. |
许成顺,王冰,杜修力,岳冲,杨钰荣. 循环加载频率对砂土液化模式的影响试验研究. 土木工程学报. 2021(11): 109-118 .
![]() | |
37. |
郭海涛,许世阳,蒲小武,张晓军,马星宇. 海原地震石碑塬液化滑移地表特征形成机制探讨. 地震工程学报. 2020(05): 1159-1164 .
![]() | |
38. |
杨博,田文通,孙军杰,刘琨,徐舜华. 海原大地震诱发石碑塬黄土滑坡机制探讨. 地震工程学报. 2020(05): 1165-1172 .
![]() | |
39. |
马星宇,王兰民,钟秀梅,蒲小武,刘富强,王谦. 地震诱发石碑塬黄土地层液化滑移距离研究. 地震工程学报. 2020(06): 1674-1682 .
![]() | |
40. |
车福东,王涛,辛鹏,张泽林,梁昌玉,刘甲美. 近远震作用下黄土滑坡动力响应与变形——以甘肃天水震区黎坪村滑坡为例. 地质通报. 2020(12): 1981-1992 .
![]() | |
41. |
MA Xingyu,WANG Lanmin,WANG Qian,WANG Ping,ZHONG Xiumei,PU Xiaowu,LIU Fuqiang,XU Xiaowei. Flow Characteristics of Large-Scale Liquefaction-Slip of the Loess Strata in Shibei Tableland, Guyuan City, Induced by the 1920 Haiyuan M8(1/2) Earthquake. Earthquake Research in China. 2020(04): 469-481 .
![]() |