• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
XIA Bo-yang, ZHENG Gang, ZHOU Hai-zuo, YANG Xin-yu, YU Xiao-xuan, ZHAO Jia-peng. Influences of length and strength of geosynthetics on bearing capacity of composite foundation with stone columns[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 209-212. DOI: 10.11779/CJGE2019S2053
Citation: XIA Bo-yang, ZHENG Gang, ZHOU Hai-zuo, YANG Xin-yu, YU Xiao-xuan, ZHAO Jia-peng. Influences of length and strength of geosynthetics on bearing capacity of composite foundation with stone columns[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 209-212. DOI: 10.11779/CJGE2019S2053

Influences of length and strength of geosynthetics on bearing capacity of composite foundation with stone columns

More Information
  • Received Date: April 29, 2019
  • Published Date: July 19, 2019
  • The performance of geosynthetic-encased stone columns in composite foundation is investigated through the finite element numerical simulation that is verified by the published experimental results from model tests, and then the effects of length of geosynthetics on the failure modes and the ultimate bearing capacities of single column and group columns are analyzed. The research results show when the stiffness of the geosynthetics is low, the length of the geosynthetics will not affect the shear failure modes, and the improvement of the ultimate bearing capacity is limited. With the increase of the stiffness of the geosynthetics, the shear failure of the stone column occurs in the area below the geosynthetics-encased body, and the ultimate bearing capacity of the foundation increases linearly with the increase of the length of the geosynthetics to the deeper soil layer. The effects of the length of the geosynthetics on the failure modes of stone column at different positions of composite foundation with pile groups are different. Compared with the side columns, the center columns have shear failure at the deeper position of the stone body, and the geosynthetics needs to reach a deeper length to exert the restraint effects.
  • [1]
    郑刚, 龚晓南, 谢永利, 等. 地基处理技术发展综述[J].土木工程学报, 2012, 45(2): 127-146.
    (ZHENG Gang, GONG Xiao-nan, XIE Yong-li, et al.State-of-the-art techniques for ground improvement in China[J]. China Civil Engineering Journal, 2012, 45(2): 127-146. (in Chinese))
    [2]
    IMPE V W F. Soil improvement techniques and their exolution[J]. Animal Science Papers & Reports, 1989, 20(1): 169-178.
    [3]
    RAJAGOPAL K, KRISHNASWAMY N R, LATHA G M.Behaviour of sand confined with single and multiple geocells[J]. Geotextiles & Geomembranes, 1999, 17(3): 171-184.
    [4]
    RAJAGOPAL K, MURUGESAN S.Geosynthetic-encased stone columns: numerical evaluation[J]. Geotextiles & Geomembranes, 2006, 24(6): 349-358.
    [5]
    GHAZAVI M, AFSHAR J N.Bearing capacity of geosynthetic encased stone columns[J]. Geotextiles & Geomembranes, 2013, 38: 26-36.
    [6]
    MUZAMMIL S P, VARGHESE R M, JOSEPH J.Numerical simulation of the response of geosynthetic encased stone columns under oil storage tank[J]. International Journal of Geosynthetics & Ground Engineering, 2018, 4(1): 4.
    [7]
    MITCHELL J K, HUBER T R.Performance of a stone column foundation[J]. Journal of Geotechnical Engineering, 1985, 111(2): 205-223.
    [8]
    郑刚, 周海祚, 刁钰, 等. 饱和黏性土中散体桩复合地基极限承载力系数研究[J]. 岩土工程学报, 2015, 37(3): 385-399.
    (ZHENG Gang, ZHOU Hai-zuo, DIAO Yu, et al.Study on the ultimate bearing capacity coefficient of the composite foundation in the saturated viscous soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 385-399. (in Chinese))
    [9]
    吕福庆, 吴文. 桩的垂直静载试验极限承载力判定方法综述[J]. 岩土力学, 1995, 16(4): 85-93.
    (LÜ Fu-qing, WU Wen.A general introduction on determining the limit bearing capacity in static-load experiment for piles length of pile-top descent[J]. Rock and Soil Mechanics, 1995, 16(4): 85-93. (in Chinese))
  • Related Articles

    [1]HU Ya-yuan. Shear hyperbolic-type equivalent-time rheological model[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1549-1555. DOI: 10.11779/CJGE201808023
    [2]XIONG Shi-hu, ZHOU Huo-ming, HUANG Shu-ling, JIANG Zhi-ming. Rheological model of soft rock in Goupitan by in-situ plate-loading creep tests[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 53-57. DOI: 10.11779/CJGE201601004
    [3]SONG Shi-xiong, ZHANG Jian-min. Thermodynamic constitutive model for rheological behavior of sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 129-133. DOI: 10.11779/CJGE2015S1026
    [4]YUAN Xian-fan, DENG Hua-feng, LI Jian-lin. Unloading rheological constitutive model for sandy mudstone[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1733-1739. DOI: 10.11779/CJGE201509024
    [5]YANG Sheng-qi, XU Peng. A new nonlinear rheological damage model for rock[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1846-1854. DOI: 10.11779/CJGE201410012
    [6]WANG Xin-gang, HU Bin, LIAN Bao-qin, YAN Jian-long, XU Zhang-jian, ZHAO Zhi-hai. Modified nonlinear viscoelastic-plastic rheological model and parameter identification of shear rheological model for granite[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 916-921. DOI: 10.11779/CJGE201405016
    [7]WANG Gang, LIU Chuan-zheng, WU Xue-zhen. Coupling rheological model for end-anchored bolt and surrounding rock mass[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 363-375. DOI: 10.11779/CJGE201402014
    [8]ZHOU Wei, HU Ying, YAN Shengcun. Fabric theory on creep deformation mechanism for high rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1274-1278.
    [9]Zhang Yujun, Sun Jun. Rheological Models and Calculation Methods for Bolted Rock Masses[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(3): 33-45.
    [10]Zhan Meili, Qian Jiahuan, Chen Xulu. Tests on Rheological Behavior of Soft Soil and Rheologic Model[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(3): 54-62.
  • Cited by

    Periodical cited type(18)

    1. 黄林冲,张燕丽,梁禹,林存刚,蒋凯,王晓良. 装配式地铁车站结构接头非线性弯曲模式识别. 同济大学学报(自然科学版). 2025(02): 187-195 .
    2. 周晓舟,李志刚,林秀桂. 考虑纵向轴力的矩形盾构隧道纵向抗弯刚度有效率研究. 特种结构. 2025(01): 10-15 .
    3. 许有俊,张正曦,张朝,刘天宇,张旭. 矩形顶管隧道F承插型接头等效刚度理论研究. 岩土工程学报. 2025(03): 506-515 . 本站查看
    4. 江学辉,罗如平,罗文俊,邓文武,胡瑞奇. 纵向槽钢对隧道力学性能影响的计算方法. 铁道学报. 2025(04): 165-173 .
    5. 黄林冲,蒋凯,梁禹,张燕丽,丁泽,杜风华. 类矩形装配式地铁车站纵向等效抗弯刚度研究. 铁道科学与工程学报. 2024(04): 1554-1566 .
    6. 江学辉,颜建伟,罗文俊,李佳宝,徐长节. 纵向压力和加固钢板对隧道力学性能影响的解析解. 岩土力学. 2024(06): 1623-1632 .
    7. 江学辉,颜建伟,罗文俊,刘天宇,徐长节. 纵向槽钢和轴力共同作用的盾构隧道等效刚度解析解. 岩土工程学报. 2024(10): 2166-2173 . 本站查看
    8. 叶肖伟,魏瑜均,陈云敏,范毅雄. 盾构隧道纵向抗弯刚度双折减计算模型. 中国公路学报. 2024(10): 139-150 .
    9. 刘颖彬,廖少明,李志义,钟铧炜,滕政伟. 矩形管片隧道纵向等效抗弯刚度与抗弯性能研究. 同济大学学报(自然科学版). 2024(12): 1823-1833 .
    10. 梁荣柱,曹世安,向黎明,康成,陈峰军,李忠超,柯宅邦,郭杨. 地表堆载作用下盾构隧道纵向受力机制试验研究. 岩石力学与工程学报. 2023(03): 736-747 .
    11. 刘顺水. 软弱地层下穿高铁超大矩形顶管盾构隧道施工稳定性研究. 高速铁路技术. 2023(02): 6-12 .
    12. 刘颖彬,廖少明,刘孟波,陈立生,徐伟忠,华建雄,刘浩. 盾构隧道纵向等效抗扭刚度与抗扭性能研究. 中南大学学报(自然科学版). 2023(06): 2220-2232 .
    13. 周浙件,范毅雄,方燃,边学成. 地基沉降引发输水盾构隧道复合结构受弯分析. 浙江大学学报(工学版). 2023(12): 2476-2488 .
    14. 章源,梁荣柱,李忠超,王舒敏,吴文兵,范默涵,蒋熙. 双圆盾构隧道结构纵向等效抗弯刚度解析解. 隧道建设(中英文). 2023(12): 2077-2088 .
    15. 黄大维,徐长节,罗文俊,姜浩,胡光静,詹涛. 考虑横向与纵向刚度相似的模型盾构隧道设计方法. 岩土工程学报. 2023(11): 2299-2307 . 本站查看
    16. 谷淡平. 填土挡墙中锚定板加固作用机理及影响因素分析. 建筑结构. 2023(S2): 2672-2678 .
    17. 马成贤,罗驰,李新志. 盾构隧道拱顶背后空洞引起管片裂损机理研究. 铁道建筑. 2022(02): 114-117 .
    18. 邓博团,申超凡. 直螺栓连接预制综合管廊刚度计算方法. 科学技术与工程. 2022(29): 13028-13036 .

    Other cited types(8)

Catalog

    Article views PDF downloads Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return