Citation: | XIA Bo-yang, ZHENG Gang, ZHOU Hai-zuo, YANG Xin-yu, YU Xiao-xuan, ZHAO Jia-peng. Influences of length and strength of geosynthetics on bearing capacity of composite foundation with stone columns[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 209-212. DOI: 10.11779/CJGE2019S2053 |
[1] |
郑刚, 龚晓南, 谢永利, 等. 地基处理技术发展综述[J].土木工程学报, 2012, 45(2): 127-146.
(ZHENG Gang, GONG Xiao-nan, XIE Yong-li, et al.State-of-the-art techniques for ground improvement in China[J]. China Civil Engineering Journal, 2012, 45(2): 127-146. (in Chinese)) |
[2] |
IMPE V W F. Soil improvement techniques and their exolution[J]. Animal Science Papers & Reports, 1989, 20(1): 169-178.
|
[3] |
RAJAGOPAL K, KRISHNASWAMY N R, LATHA G M.Behaviour of sand confined with single and multiple geocells[J]. Geotextiles & Geomembranes, 1999, 17(3): 171-184.
|
[4] |
RAJAGOPAL K, MURUGESAN S.Geosynthetic-encased stone columns: numerical evaluation[J]. Geotextiles & Geomembranes, 2006, 24(6): 349-358.
|
[5] |
GHAZAVI M, AFSHAR J N.Bearing capacity of geosynthetic encased stone columns[J]. Geotextiles & Geomembranes, 2013, 38: 26-36.
|
[6] |
MUZAMMIL S P, VARGHESE R M, JOSEPH J.Numerical simulation of the response of geosynthetic encased stone columns under oil storage tank[J]. International Journal of Geosynthetics & Ground Engineering, 2018, 4(1): 4.
|
[7] |
MITCHELL J K, HUBER T R.Performance of a stone column foundation[J]. Journal of Geotechnical Engineering, 1985, 111(2): 205-223.
|
[8] |
郑刚, 周海祚, 刁钰, 等. 饱和黏性土中散体桩复合地基极限承载力系数研究[J]. 岩土工程学报, 2015, 37(3): 385-399.
(ZHENG Gang, ZHOU Hai-zuo, DIAO Yu, et al.Study on the ultimate bearing capacity coefficient of the composite foundation in the saturated viscous soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 385-399. (in Chinese)) |
[9] |
吕福庆, 吴文. 桩的垂直静载试验极限承载力判定方法综述[J]. 岩土力学, 1995, 16(4): 85-93.
(LÜ Fu-qing, WU Wen.A general introduction on determining the limit bearing capacity in static-load experiment for piles length of pile-top descent[J]. Rock and Soil Mechanics, 1995, 16(4): 85-93. (in Chinese)) |
[1] | HU Ya-yuan. Shear hyperbolic-type equivalent-time rheological model[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1549-1555. DOI: 10.11779/CJGE201808023 |
[2] | XIONG Shi-hu, ZHOU Huo-ming, HUANG Shu-ling, JIANG Zhi-ming. Rheological model of soft rock in Goupitan by in-situ plate-loading creep tests[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 53-57. DOI: 10.11779/CJGE201601004 |
[3] | SONG Shi-xiong, ZHANG Jian-min. Thermodynamic constitutive model for rheological behavior of sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 129-133. DOI: 10.11779/CJGE2015S1026 |
[4] | YUAN Xian-fan, DENG Hua-feng, LI Jian-lin. Unloading rheological constitutive model for sandy mudstone[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1733-1739. DOI: 10.11779/CJGE201509024 |
[5] | YANG Sheng-qi, XU Peng. A new nonlinear rheological damage model for rock[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1846-1854. DOI: 10.11779/CJGE201410012 |
[6] | WANG Xin-gang, HU Bin, LIAN Bao-qin, YAN Jian-long, XU Zhang-jian, ZHAO Zhi-hai. Modified nonlinear viscoelastic-plastic rheological model and parameter identification of shear rheological model for granite[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 916-921. DOI: 10.11779/CJGE201405016 |
[7] | WANG Gang, LIU Chuan-zheng, WU Xue-zhen. Coupling rheological model for end-anchored bolt and surrounding rock mass[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 363-375. DOI: 10.11779/CJGE201402014 |
[8] | ZHOU Wei, HU Ying, YAN Shengcun. Fabric theory on creep deformation mechanism for high rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1274-1278. |
[9] | Zhang Yujun, Sun Jun. Rheological Models and Calculation Methods for Bolted Rock Masses[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(3): 33-45. |
[10] | Zhan Meili, Qian Jiahuan, Chen Xulu. Tests on Rheological Behavior of Soft Soil and Rheologic Model[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(3): 54-62. |
1. |
黄林冲,张燕丽,梁禹,林存刚,蒋凯,王晓良. 装配式地铁车站结构接头非线性弯曲模式识别. 同济大学学报(自然科学版). 2025(02): 187-195 .
![]() | |
2. |
周晓舟,李志刚,林秀桂. 考虑纵向轴力的矩形盾构隧道纵向抗弯刚度有效率研究. 特种结构. 2025(01): 10-15 .
![]() | |
3. |
许有俊,张正曦,张朝,刘天宇,张旭. 矩形顶管隧道F承插型接头等效刚度理论研究. 岩土工程学报. 2025(03): 506-515 .
![]() | |
4. |
江学辉,罗如平,罗文俊,邓文武,胡瑞奇. 纵向槽钢对隧道力学性能影响的计算方法. 铁道学报. 2025(04): 165-173 .
![]() | |
5. |
黄林冲,蒋凯,梁禹,张燕丽,丁泽,杜风华. 类矩形装配式地铁车站纵向等效抗弯刚度研究. 铁道科学与工程学报. 2024(04): 1554-1566 .
![]() | |
6. |
江学辉,颜建伟,罗文俊,李佳宝,徐长节. 纵向压力和加固钢板对隧道力学性能影响的解析解. 岩土力学. 2024(06): 1623-1632 .
![]() | |
7. |
江学辉,颜建伟,罗文俊,刘天宇,徐长节. 纵向槽钢和轴力共同作用的盾构隧道等效刚度解析解. 岩土工程学报. 2024(10): 2166-2173 .
![]() | |
8. |
叶肖伟,魏瑜均,陈云敏,范毅雄. 盾构隧道纵向抗弯刚度双折减计算模型. 中国公路学报. 2024(10): 139-150 .
![]() | |
9. |
刘颖彬,廖少明,李志义,钟铧炜,滕政伟. 矩形管片隧道纵向等效抗弯刚度与抗弯性能研究. 同济大学学报(自然科学版). 2024(12): 1823-1833 .
![]() | |
10. |
梁荣柱,曹世安,向黎明,康成,陈峰军,李忠超,柯宅邦,郭杨. 地表堆载作用下盾构隧道纵向受力机制试验研究. 岩石力学与工程学报. 2023(03): 736-747 .
![]() | |
11. |
刘顺水. 软弱地层下穿高铁超大矩形顶管盾构隧道施工稳定性研究. 高速铁路技术. 2023(02): 6-12 .
![]() | |
12. |
刘颖彬,廖少明,刘孟波,陈立生,徐伟忠,华建雄,刘浩. 盾构隧道纵向等效抗扭刚度与抗扭性能研究. 中南大学学报(自然科学版). 2023(06): 2220-2232 .
![]() | |
13. |
周浙件,范毅雄,方燃,边学成. 地基沉降引发输水盾构隧道复合结构受弯分析. 浙江大学学报(工学版). 2023(12): 2476-2488 .
![]() | |
14. |
章源,梁荣柱,李忠超,王舒敏,吴文兵,范默涵,蒋熙. 双圆盾构隧道结构纵向等效抗弯刚度解析解. 隧道建设(中英文). 2023(12): 2077-2088 .
![]() | |
15. |
黄大维,徐长节,罗文俊,姜浩,胡光静,詹涛. 考虑横向与纵向刚度相似的模型盾构隧道设计方法. 岩土工程学报. 2023(11): 2299-2307 .
![]() | |
16. |
谷淡平. 填土挡墙中锚定板加固作用机理及影响因素分析. 建筑结构. 2023(S2): 2672-2678 .
![]() | |
17. |
马成贤,罗驰,李新志. 盾构隧道拱顶背后空洞引起管片裂损机理研究. 铁道建筑. 2022(02): 114-117 .
![]() | |
18. |
邓博团,申超凡. 直螺栓连接预制综合管廊刚度计算方法. 科学技术与工程. 2022(29): 13028-13036 .
![]() |