• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
MA Xiao-lei, BA Zhen-ning, GAO Yu-hui, TIAN Qiao-huan. Vibration effect of metro operation on buildings along Tianjin Binhai New Area in soft soil areas[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 177-180. DOI: 10.11779/CJGE2019S2045
Citation: MA Xiao-lei, BA Zhen-ning, GAO Yu-hui, TIAN Qiao-huan. Vibration effect of metro operation on buildings along Tianjin Binhai New Area in soft soil areas[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 177-180. DOI: 10.11779/CJGE2019S2045

Vibration effect of metro operation on buildings along Tianjin Binhai New Area in soft soil areas

More Information
  • Received Date: April 28, 2019
  • Published Date: July 19, 2019
  • The maximum running speed of the newly built Z2 metro line in Tianjin Binhai New Area can reach 120 km/h, which is higher than that of the ordinary metro train running in the cities (about 60~80 km/h). Compared with the ordinary train load, the load of high-speed metro has the characteristics of high frequency and large amplitude, and the environmental vibration caused by it is also different. Taking the first phase of Tianjin Z2 metro line project as an example and based on the actual engineering data, by using the large-scale general finite element software ABAQUS, the three-dimensional finite element model for rail track-tunnel-foundation-building is established, and the moving loads are simulated with ABAQUS self-contained subroutine DLOAD. The influences of rapid metro operation in Tianjin Binhai New Area in soft soil areas on the vibration of buildings along the line are analyzed using the dynamic implicit analysis. At the same time, the vibration response laws of three kinds of foundation structures of pile foundation, raft foundation and strip foundation under different train speeds and tunnel buried depth conditions are compared. The conclusions can provide guidance for the prediction and evaluation of vibration along metro lines in the future.
  • [1]
    NELSON J T, SAURENMAN H J. State of the art review: prediction and control of ground borne noise and vibration from rail transit trains. Dept of Transp UMTA-MA-06-0049-83-4, 1983.
    [2]
    DAWN T M, STANWORTH C G.Ground vibrations from passing trains[J]. Journal of Sound and Vibration, 1979, 66(3): 355-359.
    [3]
    王星星. 地铁振动对沿线环境影响的预测[J]. 噪声与振动控制, 1993(5): 22-24.
    (WANG Xing-xing.Prediction of the environmental impact of metro vibration along the line[J]. Noise and Vibration Control, 1993(5): 22-24. (in Chinese))
    [4]
    潘昌实, 刘维宁. 隧道列车振动试验与动态分析[J]. 兰州铁道学院学报, 1985, 4(2): 1-21.
    (PAN Chang-shi, LIU Wei-ning.Vibration test and dynamic analysis of tunnel trains[J]. Journal of Lanzhou Railway University, 1985, 4(2): 1-21. (in Chinese))
    [5]
    周立. 地体列车运行诱发环境振动的数值模拟与烦恼率评价[D]. 南京: 南京大学, 2015.
    (ZHOU Li.Numerical simulation and annoyance rate evaluation of environmental vibration induced by terrain train operation[D]. Nanjing: Nanjing University, 2015. (in Chinese))
    [6]
    梁波, 蔡英. 不平顺条件下高速铁路路基的动力分析[J]. 铁道学报, 1999, 21(2): 84-88.
    (LIANG Bo, CAI Ying.Dynamic analysis of high-speed railway subgrade under irregular conditions[J]. Journal of Railway, 1999, 21(2): 84-88. (in Chinese))
    [7]
    胡宗允, 李晶晶. 地铁列车荷载分析方法[J]. 路基工程, 2006(5): 18-20.
    (HU Zong-yun, LI Jing-jing.Metro train load analysis method[J]. Subgrade Engineering, 2006(5): 18-20. (in Chinese))
    [8]
    YANG Y B, HUNG H H, HONG X.Wave propagation for train-induced vibrations: a finite /infinite element approach[M]. Singapore: World Scientific Publishing 2009: 91-92.
  • Cited by

    Periodical cited type(21)

    1. 艾楠,宋辰宁,王培森. 地铁运行对邻近建筑振动响应研究. 山东建筑大学学报. 2025(01): 32-40 .
    2. 杨超,朱硕,董文韬. 基于Citespace的城市轨道交通安全研究热点与前沿可视化分析. 交通与运输. 2025(01): 82-87 .
    3. 周腾飞. 地铁列车运行引起邻近建筑物振动响应研究. 四川水泥. 2025(02): 26-28 .
    4. 吴思豫,戚承志,卢春生,李太行,姜凯松,龙渊腾. 地铁运行对古城墙的振动影响. 工程建设与设计. 2025(03): 73-77 .
    5. 王凯,富志强,杨春波,王俊伟. 黄土地层公路隧道运营期下穿古长城动力响应研究. 公路. 2024(04): 416-421 .
    6. 张军. 深埋地铁隧道对临近桥梁桩基的扰动分析. 工程技术研究. 2024(07): 20-23+34 .
    7. 万颖君,金鑫,马光辉,张振宇,翟洪刚,汤方程,孙苗苗. 软土地区施工现场重载车辆对基坑周围环境振动实测分析. 华南地震. 2024(02): 128-135 .
    8. 花雨萌,谢伟平,陈斌. 地铁振动对建筑物竖向楼层响应的影响研究. 建筑结构学报. 2023(03): 122-129 .
    9. 邹超,冯青松,何卫. 列车运行引起地铁车辆段与上盖建筑环境振动研究综述. 交通运输工程学报. 2023(01): 27-46 .
    10. 孙志浩,李明睿,冯国辉,徐长节,黄展军,侯世磊,何小辉. 交通荷载下叠合式公轨隧道的力学性状研究. 铁道科学与工程学报. 2023(06): 2210-2221 .
    11. 贾宝新,周志扬,苑文雅,张晶. 基于等效质点峰值振动速度的高铁线路周边建筑结构振动评价研究. 岩土力学. 2023(09): 2696-2706 .
    12. 路德春,高泽军,孔凡超,马一丁,沈晨鹏,杜修力. 地铁列车运行诱发地面邻近建筑振动的数值模拟研究. 土木与环境工程学报(中英文). 2023(06): 113-124 .
    13. 肖迪,段旭,刘武超,邹愈,董琪,叶万军. 地铁振动作用下上部正交综合管廊动力响应试验研究. 防灾减灾工程学报. 2023(05): 1151-1159 .
    14. 王韵超,王思崎,郑茗旺,郑凌逶,谢新宇. 弹簧浮置板减振措施对地铁下穿不同结构建筑物振动影响实测及分析. 低温建筑技术. 2021(03): 51-54+59 .
    15. 谭佳,许炜萍,赵楚轩,王呼佳,杨朋,孙克国. 地铁过渡段结构振动响应特性与噪声分析. 城市轨道交通研究. 2021(05): 37-41+46 .
    16. 袁庆利. 运营期地铁列车振动下软黏土的动力响应及变形研究. 国防交通工程与技术. 2021(04): 25-30 .
    17. 汪益敏,刘品言,陶子渝,陈皓粤,周杰. 地铁车辆段直线电机列车车致振动的试验研究. 铁道科学与工程学报. 2021(09): 2436-2443 .
    18. 夏志强,凌可胜,董克胜,徐小扣,沈威,方火浪. 地铁列车曲线运行引起学校建筑物振动响应分析. 地震工程学报. 2021(06): 1377-1386 .
    19. 程保青,郭婧怡,蒋浩杰. 地铁车辆段咽喉区上盖建筑振动影响. 应用声学. 2021(06): 911-917 .
    20. 郑国琛,许航莉,祁皑,郭金龙. 地铁及地面交通环境振动实测与数值模拟研究. 中国环境科学. 2020(09): 4146-4154 .
    21. 孟坤,崔春义,许民泽,王启福,苏健. 地铁运行引起的临近桥梁结构振动分析. 深圳大学学报(理工版). 2020(06): 610-616 .

    Other cited types(18)

Catalog

    Article views (237) PDF downloads (193) Cited by(39)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return