• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
YU Chang-yi, LIU Ai-min, GUO Bing-chuan, LIU Wen-bin. Different tensile tests on difference of strength of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 157-160. DOI: 10.11779/CJGE2019S2040
Citation: YU Chang-yi, LIU Ai-min, GUO Bing-chuan, LIU Wen-bin. Different tensile tests on difference of strength of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 157-160. DOI: 10.11779/CJGE2019S2040

Different tensile tests on difference of strength of frozen soils

More Information
  • Received Date: April 28, 2019
  • Published Date: July 19, 2019
  • The tensile strength of frozen soils is an important index in engineering design. In the tests, it is found that the uniaxial tensile strength of frozen soils is inconsistent with the four-point bending tensile strength. For this reason, the mesoscopic numerical method, assuming that the parameters of mesoscopic materials conform to the Weibull distribution, and the damage model are adopted. The properties of macroscopic materials conform to the linear elastic hypothesis. The uniaxial tensile tests and the four-point bending tensile tests are simulated respectively. By introducing the theory of non-localization, it is explained that the strength difference comes from the homogeneity of the materials, and the relationship between the characteristic length of the materials and the homogeneity is quantitatively given. It provides a theoretical basis for measuring the tensile strength of frozen soils and designing the frozen soils.
  • [1]
    V N RAZBEGIN S S V, MAKSIMYAK R V, SADOVSKII A V. Mechanical properties of frozen soils[J]. Soil Mechanics and Foundation Engineering, 1996, 33(2): 35-45.
    [2]
    李宁, 程国栋, 徐学祖, 等. 冻土力学的研究进展与思考[J]. 力学进展, 2001, 31(1): 95-102.
    (LI Ning, CHENG Guo-dong, XU Xue-zu, et al.The advance and review on frozen soil mechanica[J]. Advances in Mechanics, 2001, 31(1): 95-102. (in Chinese))
    [3]
    孟祥连. 青藏铁路多年冻土工程地质勘察[J]. 铁道勘察, 2006, 32(3): 28-31.
    (MENG Xiang-lian.The Geological prospecting for the permaforst engineering in the Qinghai-Tibet railway[J]. Railway Investigation and Surveying, 2006, 32(3): 28-31. (in Chinese))
    [4]
    于长一. 地铁联络通道冻结法施工数值模拟分析[D]. 天津大学, 2014.
    (YU Chang-yi.Numerical simulation analysis of freezing method construction of metro communication channel[D]. Tianjin University, 2014. (in Chinese))
    [5]
    叶荣华, 刘干斌, 叶俊能. 宁波轨道交通人工冻土物理力学特性试验研究[J]. 工程勘察, 2011, 39(8): 19-23.
    (YE Rong-hua, LIU Gan-bin, YE Jun-neng.Experimental study on physical and mechanical properties of artificial frozen soil in Nningbo rail transit[J]. Geotechnical Investigation & Surveying, 2011, 39(8): 19-23. (in Chinese))
    [6]
    TAMRAKAR S, MITACHI T, TOYOSAWA Y, et al.Tensile strength of compacted and saturated soils using newly developed tensile strength measuring apparatus[J]. Soils and Foundations, 2005, 45(6): 103-110.
    [7]
    沈忠言, 王家澄, 彭万巍, 等. 单轴受拉时冻土结构变化及其机理初析[J]. 冰川冻土, 1996(3): 72-77.
    (SHEN Zhong-yan, WANG Jia-cheng, PENG Wan-wei, et al.Change in structures and its mechanisms of frozen soil under uniaxial tensile[J] Journal of Glaciology and Geocryology, 1996(3): 72-77. (in Chinese))
    [8]
    ZHOU G, HU K, ZHAO X, et al.Laboratory investigation on tensile strength characteristics of warm frozen soils[J]. Cold Regions Science and Technology, 2015, 113: 81-90.
    [9]
    孙卓. 冻土断裂力学应力强度因子的数值模拟计算[D]. 大连: 大连理工大学, 2006.
    (SUN Zhuo.The numerical simulation of stress intensity factor in fracture mechanics of frozen soil[D]. Dalian: Dalian University of Technology, 2006. (in Chinese))
    [10]
    FARRELL D A, GREACEN E L, LARSON W E.The effect of water content on axial strain in a loam soil under tension and compression[J]. Soil Science Society of America Journal, 1967, 31(4): 445-450.
    [11]
    DAI F, XIA K, TANG L.Rate dependence of the flexural tensile strength of Laurentian granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(3): 469-475.
    [12]
    ISUPOV L, MIKHAILOV S E.A comparative analysis of several nonlocal fracture criteria[J]. Archive of Applied Mechanics, 1998, 68(9): 597-612.
    [13]
    CHRIST M, PARK J-B.Laboratory determination of strength properties of frozen rubber-sand mixtures[J]. Cold Regions Science and Technology, 2010, 60(2): 169-175.
  • Related Articles

    [1]WANG Jun-jie, HUANG Shi-yuan, GUO Wan-li, ZHAO Tian-long. Compression-shear tension fracture criteria for rock-like materials considering geometric characteristics of cracks and T-stresses[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1622-1631. DOI: 10.11779/CJGE202009006
    [2]HU Jing, YAO Yang-ping, ZHANG Xue-dong, WEI Ying-qi, ZHANG Zi-tao, CHEN Zu-yu. Dynamic strength criterion for rock-like materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 495-502. DOI: 10.11779/CJGE202003011
    [3]DAI Feng, ZHU Wan-cheng, LI Shao-hua, YU Yong-jun. Shape factor of irregular internal cracks in rock-like materials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1039-1047. DOI: 10.11779/CJGE201806009
    [4]HUANG Yan-hua, YANG Sheng-qi, JU Yang, ZHOU Xiao-ping, GAO Feng. Experimental study on mechanical behavior of rock-like materials containing pre-existing intermittent fissures under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1212-1220. DOI: 10.11779/CJGE201607007
    [5]CONG Yu, WANG Zai-quan, ZHENG Ying-ren, FENG Xia-ting. Experimental study on microscopic parameters of brittle materials based on particle flow theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1031-1040. DOI: 10.11779/CJGE201506009
    [6]CHEN Ya-dong, YU Yan, SHE Yue-xin. Method for determining mesoscopic parameters of sand in three-dimensional particle flow code numerical modeling[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 88-93.
    [7]ZHAO Yan-lin, WAN Wen, WANG Wei-jun, WANG Min, PENG Qing-yang. Fracture experiments on ordered multi-crack body in rock-like materials under uniaxial compression and numerical simulation of wing cracks[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2097-2109.
    [8]LUO Rong, ZENG Ya-wu, DU Xin. Relationship between macroscopic and mesoscopic mechanical parameters of inhomogenous rock material[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2331-2336.
    [9]XUE Dong-jie, ZHOU Hong-wei, KONG Lin, ZHAO Tian, YI Hai-yang, TANG Xian-li. Mechanism of unloading-induced permeability increment of protected coal seam under mining[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1910-1916.
    [10]LUO Yong, GONG Xiaonan, LIAN Feng. Simulation of mechanical behaviors of granular materials by three-dimensional discrete element method based on particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 292-297.
  • Cited by

    Periodical cited type(4)

    1. 马鹏程,刘润,李国和,苏伟,施威,蒋成强. 成层土中长桩竖向承载激发规律研究. 河北工程大学学报(自然科学版). 2024(02): 23-29 .
    2. 付有为,贺佐跃. 基于附加应力法的刚性桩复合地基沉降影响参数分析. 科技和产业. 2024(14): 186-191 .
    3. 刘浩,高泉平,李纪昕,李良昊,张颖,丁锐恒,芮瑞. 深厚软土层端承摩擦桩桩承式加筋低路堤现场试验. 土木工程与管理学报. 2023(06): 60-69 .
    4. 姚云龙,李积泉,刘鑫,徐奋强,洪宝宁. 基于相似理论的复合地基弹性垫层模型试验研究. 公路工程. 2023(06): 84-93 .

    Other cited types(8)

Catalog

    Article views (227) PDF downloads (156) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return