• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
DAI Xuan, XU Guan-ying, HUO Hai-feng, CHENG Xue-song, YAN Xiao-rong. Three-dimensional finite element analysis of impact of utility tunnel construction on overlying deep excavations[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 21-24. DOI: 10.11779/CJGE2019S1006
Citation: DAI Xuan, XU Guan-ying, HUO Hai-feng, CHENG Xue-song, YAN Xiao-rong. Three-dimensional finite element analysis of impact of utility tunnel construction on overlying deep excavations[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 21-24. DOI: 10.11779/CJGE2019S1006

Three-dimensional finite element analysis of impact of utility tunnel construction on overlying deep excavations

More Information
  • Received Date: April 27, 2019
  • Published Date: July 14, 2019
  • A shielding method utility tunnel is constructed underneath the foundation pit using the cover-excavation method in Shenyang. Based on the analysis and comparison of the measured data of this project, a three-dimensional finite element model is established using the HSS constitutive model. The deformation of the retaining structures, the strut settlement and the deformation of the finished structures in the pit caused by tunnelling are analyzed. The research shows that the characteristics of the tunnelling underneath the foundation pit can be described appropriately using the HSS model. The underneath tunnelling will induce differential settlement at the top of the retaining structures. The settlement of the finished structures and struts in the foundation pit increases gradually from the middle part to the two sides near the retaining structures. The reasonablely designed columns can control the settlement of the struts effectively.
  • [1]
    余常俊. 城市地下综合管廊浅析[J]. 公路, 2016, 10: 153-157.
    (YU Chang-jun.Brief analysis of city underground utility gallery[J]. Highway, 2016, 10: 153-157. (in Chinese))
    [2]
    CHAKERI H, OZCELIK Y, UNVER B.Effects of important factors on surface settlement prediction for metro tunnel excavated by EPB[J]. Tunnelling and Underground Space Technology, 2013, 36: 14-23.
    [3]
    DIAS D, KASTNER R.Movements caused by the excavation of tunnels using face pressurized shields — Analysis of monitoring and numerical modeling results[J]. Engineering Geology, 2013, 152(1): 17-25.
    [4]
    陈江, 陈思明, 傅金阳, 等. 盾构侧穿邻近桥桩施工影响及加固措施研究[J]. 公路交通科技, 2016, 33(7): 97-102.
    (CHEN Jiang, CHEN Si-ming, FU Jin-yang, et al.Study on effect of shield tunneling side-crossing adjacent piles and reinforcement Measures[J]. Journal of Highway and Transportation Research and Development, 2016, 33(7): 97-102. (in Chinese))
    [5]
    王国富, 孙捷城, 路林海, 等. 盾构隧道近距离下穿高架桥主动预支护研究[J]. 现代隧道技术. 2017, 54(6): 195-202.
    (WANG Guo-fu, SUN Jie-cheng, LU Lin-hai, et al.Active pre-support technology for a shield tunnel approaching to a proposed viaduct pile[J]. Modern Tunnelling Technology, 2017, 54(6): 195-202. (in Chinese))
    [6]
    郑刚, 杜一鸣, 刁钰, 等. 基坑开挖引起邻近既有隧道变形的影响区研究[J]. 岩土工程学报, 2016, 38(4): 599-612.
    (ZHENG Gang, DU Yi-ming, DIAO Yu, et al.Influenced zones for deformation of existing tunnels adjacent to excavations[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 599-612. (in Chinese))
    [7]
    HSIEH P, OU C.Shape of ground surface settlement profiles caused by excavation[J]. Canadian Geotechnical Journal, 1998, 35(6): 1004-1017.
  • Related Articles

    [1]MA Peng-fei, LI Shu-chen, YUAN Chao, ZHOU Hui-ying, WANG Man-ling, WANG Xiu-wei. Simulations of crack propagation in rock-like materials by peridynamics based on SED criterion[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1109-1117. DOI: 10.11779/CJGE202106014
    [2]YU Zhi-fa, YU Chang-yi, LIU Feng, YAN Shu-wang. Application of numerical manifold method in crack propagation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 751-757. DOI: 10.11779/CJGE202004019
    [3]YU Shu-yang, WANG Hai-jun, REN Ran, TANG Lei, ZHONG Lin-wei, ZHANG Zhi-tao, TANG Zi-xuan. Propagation of double internal cracks under uniaxial tension based on 3D-ILC[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2367-2373. DOI: 10.11779/CJGE201912024
    [4]WANG Hai-jun, ZHANG Jiu-dan, REN Ran, TANG Lei, ZHONG Ling-wei. Embedded cracks in brittle solids induced by laser-medium interaction (3D-ILC)[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2345-2352. DOI: 10.11779/CJGE201912021
    [5]CHEN Guo-qing, PAN Yuan-gui, ZHANG Guo-zheng, ZHANG Guang-ze, WANG Dong. Thermal infrared precursor information of crack propagation for rock bridges[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1817-1826. DOI: 10.11779/CJGE201910005
    [6]LI Meng, ZHU Zhe-ming, LIU Rui-feng, LIU Bang. Influences of holes on dynamic propagation behaviors of blasting cracks[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2191-2199. DOI: 10.11779/CJGE201812005
    [7]ZUO Jian-ping, CHEN Yan, SONG Hong-qiang, WEI Xu. Evolution of pre-peak axial crack strain and nonlinear model for coal-rock combined body[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1609-1615. DOI: 10.11779/CJGE201709008
    [8]ZHU Lei, HUANG Run-qiu, YAN Ming, CHEN Guo-qing. Step-path failure mechanism of rock slopes based on crack coalescence modes in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1216-1224. DOI: 10.11779/CJGE201707007
    [9]RUAN Bin, CHEN Guo-xing, WANG Zhi-hua. Numerical simulation of cracks of homogeneous earth dams using an extended finite element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 49-54.
    [10]SUN Yuelin, SHEN Zhenzhong, WU Yuejian, XUE Jianfeng. Analytic model for tracing crack propagation under coupled mechanical-hydrological environment[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 199-204.
  • Cited by

    Periodical cited type(13)

    1. 汪云飞,王海军,赵新铭,汤雷,潘建伍. 热载荷下脆性固体中三维平行内裂纹的相互作用:实验和数值模拟(英文). Journal of Central South University. 2023(01): 331-350 .
    2. 胡南燕,黄建彬,罗斌玉,李雪雪,陈敦熙,曾子懿,付晗,娄家豪. 环氧树脂基脆性透明岩石相似材料配比试验研究. 岩土力学. 2023(12): 3471-3480 .
    3. Jiyun Xu,Hanzhang Li,Haijun Wang,Lei Tang. Experimental study on 3D internal penny-shaped crack propagation in brittle materials under uniaxial compression. Deep Underground Science and Engineering. 2023(01): 37-51 .
    4. Haijun Wang,Hanzhang Li,Lei Tang,Xuhua Ren,Qingxiang Meng,Chun Zhu. Fracture of two three-dimensional parallel internal cracks in brittle solid under ultrasonic fracturing. Journal of Rock Mechanics and Geotechnical Engineering. 2022(03): 757-769 .
    5. Haijun Wang,Hanzhang Li,Lei Tang,Jianchun Li,Xuhua Ren. Fracturing behavior of brittle solids containing 3D internal crack of different depths under ultrasonic fracturing. International Journal of Mining Science and Technology. 2022(06): 1245-1257 .
    6. 王海军,乐成军,汤雷,赵初,李汉章,戚海棠. 基于3D-ILC含水平内裂纹脆性固体三点弯断裂特性研究. 岩土力学. 2021(10): 2773-2784 .
    7. 王海军,顾浩,任然,汤雷,郁舒阳,戚海棠. 基于3D-ILC脆性材料双共面与障碍内裂纹扩展特性. 煤炭学报. 2021(S1): 263-273 .
    8. 张志韬,王海军,汤雷,赵初,李汉章,苏正洋. 基于3D-ILC含偏心内裂纹半圆弯拉断裂特性研究. 岩土力学. 2020(01): 111-122+131 .
    9. 王海军,郁舒阳,李汉章,任然,汤雷,朱文炜. 基于3D-ILC超声场致脆性固体单内裂纹扩展规律研究. 岩石力学与工程学报. 2020(05): 938-948 .
    10. 王海军,郁舒阳,汤子璇,汤雷,任然,徐进. 基于3D-ILC含60°内裂纹脆性球体Ⅰ-Ⅱ-Ⅲ型断裂研究. 岩土力学. 2020(05): 1573-1582 .
    11. 王海军,张珂,任然,汤雷,郁舒阳. 基于3D-ILC含60°平行双内裂纹脆性巴西圆盘断裂特性. 工程科学与技术. 2020(04): 184-193 .
    12. 金爱兵,王树亮,王本鑫,孙浩,陈帅军,朱东风. 基于DIC的3D打印交叉节理试件破裂机制研究. 岩土力学. 2020(12): 3862-3872 .
    13. 王海军,郁舒阳,任然,汤雷,李欣昀,贾宇. 基于3D-ILC含内裂纹孔口脆性固体断裂特性试验. 岩土力学. 2019(06): 2200-2212 .

    Other cited types(3)

Catalog

    Article views (266) PDF downloads (151) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return