• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
WANG Hai-jun, ZHANG Jiu-dan, REN Ran, TANG Lei, ZHONG Ling-wei. Embedded cracks in brittle solids induced by laser-medium interaction (3D-ILC)[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2345-2352. DOI: 10.11779/CJGE201912021
Citation: WANG Hai-jun, ZHANG Jiu-dan, REN Ran, TANG Lei, ZHONG Ling-wei. Embedded cracks in brittle solids induced by laser-medium interaction (3D-ILC)[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2345-2352. DOI: 10.11779/CJGE201912021

Embedded cracks in brittle solids induced by laser-medium interaction (3D-ILC)

More Information
  • Received Date: November 02, 2017
  • Published Date: December 24, 2019
  • The research of fracture mechanics is based on physical experiments, which mainly deal with the specimen containing cracks and defaults. Since surface cracks and penetrated cracks are relatively easy to make and observe, the theoretical study on fracture mostly depends on these two kinds of experiments. The embedded cracks actually can largely influence the characteristics of the materials. However, the experiments with embedded cracks have been a tough task because of the difficulty in the manufacturing technique. A new method (3D-ILC) is proposed for making the internal embedded cracks based on the laser-medium damage theory. Firstly, review of the traditional methods for embedded cracks is given. Then the theory of laser-medium damage is proposed. The specimen examples with a single embedded crack, double X-type cracks and multi-cracks are shown. By the axial compressive experiment tests, the feasibility of 3D-ILC is confirmed. Meanwhile, 3D-ILC has the following advantages: easy observation, economy and efficiency, real cracks, high homogeneity, easy control and great reduction of discretization of results, which is very important in experimental research. The proposed 3D-ILC method will provide vast potential for future development of fracture mechanics.
  • [1]
    余寿文. 断裂力学的历史发展与思考[J]. 力学与实践, 2015, 37(3): 390-394.
    (YU Shou-wen.The history and development of fracture mechanics[J]. Mechanics in Engineering, 2015, 37(3): 390-394. (in Chinese))
    [2]
    国峰楠. 含界面非均匀材料的热断裂力学研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
    (Guo Feng-nan.Study on thermal fracture mechanics of non-uniform materials with interface[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese))
    [3]
    徐世烺, 董丽欣, 王冰伟, 等. 我国混凝土断裂力学发展三十年[J]. 水利学报, 2014, 45(增刊1): 1-9.
    (XU Shi-yu, DONG Li-xin, WANG Bing-wei, et al.The development of concrete fracture mechanics in China for 30 years[J]. Hydraulic Engineering, 2014, 45(S1): 1-9. (in Chinese))
    [4]
    嵇醒. 断裂力学判据的评述[J]. 力学学报, 2016, 48(4): 741-753.
    (JI Xing.A review of fracture mechanics criteria[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 741-753. (in Chinese))
    [5]
    袁进科, 裴向军. 汶川地震震裂山体裂缝变形特征与动力机制研究[J]. 防灾减灾工程学报, 2015, 35(6): 848-855.
    (YUAN Jin-ke, PEI Xiang-jun.Study on fracture deformation characteristics and dynamic mechanism of fractured mountain body in Wenchuan earthquake[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(6): 848-855. (in Chinese))
    [6]
    刘泉声, 魏莱, 刘学伟, 等. 基于Griffith强度理论的岩石裂纹起裂经验预测方法研究[J]. 岩石力学与工程学报, 2017, 36(7): 1561-1569.
    (LIU Quan-sheng, WEI Lei, LIU Xue-wei, et al.Empirical prediction method of rock crack initiation based on Griffith strength theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7): 1561-1569. (in Chinese))
    [7]
    安兵兵. 生物硬组织材料的变形与断裂机理研究及材料设计[D]. 上海: 上海大学, 2012.
    (AN Bing-bing.Study on deformation and fracture mechanism and material design of bio-hard tissue materials[D]. Shanghai: Shanghai University, 2012. (in Chinese))
    [8]
    GRIFFITH. The phenomena of rupture and flow in solids[J]. Phil Trans Roy Soc, 1920, 221: 163-198.
    [9]
    IRWIN G R.Analysis of stresses and strains near end of a crack traversing a plate[J]. J Appl Mech, 1957, 24: 361-364.
    [10]
    RICE J R.A path independent integral and the approximate analysis of strain concentration by notches and cracks[J]. Journal of Applied Mechanics, 1968, 35(2): 379-386.
    [11]
    LAWN B.Fracture of brittle solids[M]. Cambridge: Cambridge University Press, 1993.
    [12]
    赵洪宝, 胡桂林, 李伟, 等. 预制裂隙岩石裂纹扩展规律的研究进展与思考[J]. 地下空间与工程学报, 2016, 12(增刊2): 899-906.
    (ZHAO Hong-bao, HU Gui-lin, LI Wei, et al.The research progress and thinking on the crack growth of the pre-fabricated crack rock[J]. Chinese Journal Underground Space and Engineering, 2016, 12(S2): 899-906. (in Chinese))
    [13]
    李世愚, 和泰名, 尹祥础. 岩石断裂力学[M]. 北京: 科学出版社, 2015.
    (LI Shi-yu, TAI Ming, YIN Xiang-chu.Rock fracture mechanics[M]. Beijing: Science Press, 2015. (in Chinese))
    [14]
    JIANG C, ZHAO G, ZHU J, et al.Investigation of dynamic crack coalescence using a gypsum-like 3d printing material[J]. Rock Mechanics and Rock Engineering, 2016, 49(10): 3983-3998.
    [15]
    赵毅鑫, 龚爽, 姜耀东, 等. 基于半圆弯拉试验的煤样抗拉及断裂性能研究[J]. 岩石力学与工程学报, 2016, 35(6): 1255-1264.
    (ZHAO YI-xin, GONG Shuang, JIANG Yao-dong, et al.Study on tensile and fracture properties of coal samples based on semicircle bending tensile test[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(6): 1255-1264. (in Chinese))
    [16]
    王慧晶. 基于声发射参数的材料疲劳断裂研究[D]. 大连:大连理工大学, 2013.
    (WANG Hui-jing.Study on fatigue fracture of materials based on acoustic emission parameters[D]. Dalian: Dalian University of Technology, 2013. (in Chinese))
    [17]
    袁红梅. 黏结结构界面缺陷超声检测技术及其应用研究[D]. 北京: 北京工业大学, 2010.
    (YUAN Hong-mei.Ultrasonic testing technology for interfacial defects of bonded structures and its application[D]. Beijing: Beijing University of Technology, 2010. (in Chinese))
    [18]
    SOMMER E.Formation of fracture lances in glass[J]. Engineering Fracture Mechanics, 1969, 1(3): 539-546.
    [19]
    朱维申, 陈卫忠, 申晋. 雁形裂纹扩展的模型试验及断裂力学机制研究[J]. 固体力学学报, 1998, 19(4): 75-80.
    (ZHU Wei-shen, CHEN Wei-zhong, SHEN Jin.Study on the model test and fracture mechanics of the extension of the goose-shaped crack[J]. Acta Mechanica Solida Sinica, 1998, 19(4): 75-80. (in Chinese))
    [20]
    SARFARAZI V, HAERI H.A review of experimental and numerical investigations about crack propagation[J]. Computers and Concrete, 2016, 18(2): 235-266.
    [21]
    李术才, 杨磊, 李明田, 等. 三维内置裂隙倾角对类岩石材料拉伸力学性能和断裂特征的影响[J]. 岩石力学与工程学报. 2009, 28(2): 281-289.
    (LI Shu-cai, YANG Lei, LI Ming-tian, et al.Effect of three-dimensional built-in fracture dip angle on tensile mechanical properties and fracture characteristics of rock-like materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(2): 281-289. (in Chinese))
    [22]
    李廷春, 吕海波, 王辉. 单轴压缩载荷作用下双裂隙扩展的CT 扫描试验[J]. 岩土力学, 2010, 31(1): 9-14.
    (LI Ting-chun, LÜ Hai-bo, WANG Hui.CT scanning test of double crack propagation under uniaxial compression[J]. Rock and Soil Mechanics, 2010, 31(1): 9-14. (in Chinese))
    [23]
    林鹏, 周雅能, 李子昌, 等. 含三维预置单裂纹缺陷岩石破坏试验研究[J]. 岩石力学与工程学报, 2008, 27(增刊2): 3882-3887.
    (LIN Peng, ZHOU Yan-neng, LI Zi-chang, et al.Experimental study on rock failure with 3-D pre-placed single crack defects[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S2): 3882-3887. (in Chinese))
    [24]
    ADAMS M, SINES G.Crack extension from flaws in a brittle material subjected to compression[J]. Tectonophysics, 1978, 49(1): 97-118.
    [25]
    DYSKIN A, JEWELL R, JOER H, et al.Experiments on 3-D crack growth in uniaxial compression[J]. International Journal of Fracture, 1994, 65(4): 77-83.
    [26]
    DYSKIN A V, SAHOURYEH E, JEWELL R J, et al.Influence of shape and locations of initial 3-D cracks on their growth in uniaxial compression[J]. Engineering Fracture Mechanics, 2003, 70(15): 2115-2136.
    [27]
    FU J, CHEN K, ZHU W, et al.Progressive failure of new modelling material with a single internal crack under biaxial compression and the 3-D numerical simulation[J]. Engineering Fracture Mechanics, 2016, 165: 140-152.
    [28]
    朱珍德, 林恒星, 孙亚霖. 透明类岩石内置三维裂纹扩展变形试验研究[J]. 岩土力学, 2016, 37(4): 913-921.
    (ZHU Zhen-de, LIN Xie-xing, SUN Ya-lin.Experimental study on 3-D crack propagation and deformation of transparent rock[J]. Rock and Soil Mechanics, 2016, 37(4): 913-921. (in Chinese))
    [29]
    程靳, 赵树山. 断裂力学[M]. 北京: 科学出版社, 2006.
    (CHENG Jin, ZHAO Shu-shan.Fracture mechanics[M]. Beijing: Science Press, 2006. (in Chinese))
    [30]
    KOLARI K.A complete three-dimensional continuum model of wing-crack growth in granular brittle solids[J]. International Journal of Solids and Structures, 2016, 115: 27-42.
    [31]
    郭彦双, 林春金, 朱维申. 脆性材料中三维裂隙断裂试验、理论与数值模拟研究[J]. 岩石力学与工程学报, 2008, 27(增刊1): 3191-3195.
    (GUO Yan-shuang, LIN Chun-jin, ZHU Wei-shen.Theoretical and numerical simulation of three-dimensional fracture test in brittle materials[J]. Journal of Rock Mechanics and Engineering, 2008, 27(S1): 3191-3195. (in Chinese))
    [32]
    TANG H, ZHU Z, ZHU M, et al.Mechanical behavior of 3D crack growth in transparent rock-like material containing preexisting flaws under compression[J]. Advances in Materials Science and Engineering, 2015(2): 1-10.
    [33]
    付金伟, 朱维申, 谢富东, 等. 岩石中三维双裂隙组扩展和贯通过程的试验研究和弹脆性模拟[J]. 岩土力学, 2013, 34(9): 2489-2496.
    (FU Jin-wei, ZHU Wei-shen, XIE Fu-dong, et al.Experimental study and elastic brittleness simulation of the propagation and penetration process of three-dimensional double-crack groups in rock[J]. Rock and Soil Mechanics, 2013, 34(9): 2489-2496. (in Chinese))
    [34]
    孙亚霖, 朱珍德, 林恒星. 透明类岩石材料内置裂隙试验研究[J]. 河北工程大学学报( 自然科学版), 2015, 32(2): 1-4.
    (SUN Yi-lin, ZHU Zhen-de.Experimental study on the built-in fracture of transparent rock materials[J]. Journal of Hebei Engineering University (Natural Science Edition), 2015, 32(2): 1-4. (in Chinese))
    [35]
    KOTZ F, ARNOLD K, BAUER W, et al.Glass, three-dimensional printing of transparent[J]. Nature, 2017, 544(7650): 337-379.
    [36]
    巫殷忠. 飞秒激光在固体材料上制作微结构的研究[D]. 天津: 天津大学, 2008.
    (WU Yin-zhong.Fabrication of microstructure on solid materials by femtosecond laser[D]. Tianjin: Tianjin University, 2008. (in Chinese))
    [37]
    王敏. 飞秒激光加工玻璃材料微结构技术研究[D]. 深圳: 深圳大学, 2016.
    (WANG Min.Study on the microstructure of glass material for femtosecond laser processing[D]. Shenzhen: Shenzhen University, 2016. (in Chinese))
    [38]
    游牧. 超短激光脉冲与透明介质相互作用[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2005.
    (YOU Mu. The ultrashort laser pulse interacts with the transparent medium[D]. Xi'an: Graduate School of Chinese Academy of Sciences (Xi'an Optical Precision Machinery Research Institute), 2005. (in Chinese))
    [39]
    刘大勇. 石英玻璃中飞秒激光三维加工阈值的研究及其应用[D]. 北京: 北京大学, 2008.
    (LIU Da-yong.Study on the threshold of femtosecond laser three-dimensional machining in quartz glass and its application[D]. Beijing: Peking University, 2008. (in Chinese))
    [40]
    CHEN F F, 林光海. 等离子体物理学导论[M]. 北京: 科学出版社, 1980.
    (CHEN F F, LIN Guang-hai.Introduction to plasma physics[M]. Beijing: Science Press, 1980. (in Chinese))
    [41]
    王玺. 准分子激光损伤K9玻璃和熔石英的理论与实验研究[D]. 合肥: 中国科学技术大学, 2016.
    (WANG Xi.Theoretical and experimental study on excimer laser damage of K9 glass and fused quartz[D]. Hefei: China University of Science and Technology, 2016. (in Chinese))
  • Related Articles

    [1]YANG Kaixuan, ZHAO Heng, ZHAO Minghua, JIA Wurong, HUA Xugang. Analytical solution for vertical load transfer of cast-in-place piles considering shear-induced volumetric contraction across shaft-rock joints[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1229-1238. DOI: 10.11779/CJGE20240112
    [2]ZHENG Chang-jie, CUI Yi-qin, DING Xuan-ming, LUAN Lu-bao. Analytical solution for dynamic interaction of end-bearing pile groups subjected to vertical dynamic loads[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2187-2195. DOI: 10.11779/CJGE202212005
    [3]QI Chang-guang, LIU Han-long, CHEN Yong-hui, LIU Gan-bin, ZUO Dian-jun. Bearing capacity tests and settlement calculation method of plastic tube cast-in-place concrete pile[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2302-2308. DOI: 10.11779/CJGE201612020
    [4]LUAN Lu-bao, DING Xuan-ming, LIU Han-long, ZHENG Chang-jie. Analytical solution of lateral dynamic response of a large diameter pipe pile considering influence of axial load[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1859-1868. DOI: 10.11779/CJGE201610015
    [5]ZHAO Chun-feng, LIU Feng-ming, QIU Zhi-xiong, ZHAO Cheng, WANG Wei-zhong. Study on bearing behavior of a single pile under combined vertical and lateral loads in sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 183-190. DOI: 10.11779/CJGE201501023
    [6]LING Dao-sheng, ZHANG Fei-xia, WANG Yun-gang, SHAN Zhen-dong, FANG Zhi-hui. Exact solution for one-dimensional transient response of single-layer fluid-saturated porous media under arbitrary vertical loadings[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 966.
    [7]Analytical solution on dynamic response of lining subjected to sudden internal uniform loading[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(2).
    [8]ZHENG Gang, WANG Li. Effect of loading level and sequence of vertical and lateral load on bearing capacity of single pile[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1796-1804.
    [9]DONG Tianwen, LIANG Li. Solution of load-settlement function of single screw pile under axial pressure[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1483-1487.
    [10]Wei Yueguang. Perturbation Solutions for Elasto-piastic Analysis of Circular Tunnel under Unequal Compression in Two Directions[J]. Chinese Journal of Geotechnical Engineering, 1990, 12(4): 11-20.
  • Cited by

    Periodical cited type(9)

    1. 陈芳. 基于有效固结力模型的河道堤防加固技术. 中国新技术新产品. 2024(12): 73-75 .
    2. 夏璐,张钢泉. 基于Mindlin解的自锚试桩上、下段相互作用研究. 水利技术监督. 2024(10): 151-155 .
    3. 郭帅杰,宋绪国. Mindlin方法在桩承式U形路基沉降分析中的应用. 铁道标准设计. 2023(04): 22-27+33 .
    4. 邱明兵,高文生. Mindlin解积分的方形荷载竖向应力系数初等解. 应用力学学报. 2021(02): 655-662 .
    5. 熊玉铭,何永曦,潘浩. 基于桩端和桩侧阻力相互作用的超长桩承载力研究. 能源与环保. 2021(05): 57-62+67 .
    6. 郭帅杰,宋绪国. 实体基础Mindlin方法在高铁路基沉降分析中的应用研究. 路基工程. 2020(02): 1-5+22 .
    7. 王力伟,程梦筠,蒋关鲁. 基于差异变形控制的路基分幅间距研究. 交通科技. 2020(04): 67-71 .
    8. 童星,袁静,姜叶翔,刘兴旺,李瑛. 基于Mindlin解的基坑分层卸荷附加应力计算及回弹变形的多因素影响分析. 岩土力学. 2020(07): 2432-2440 .
    9. 王东英,汤华,尹小涛,杨光华,姜燕. 基于简化力学模型的隧道锚极限承载力估值公式. 岩土力学. 2020(10): 3405-3414 .

    Other cited types(10)

Catalog

    Article views PDF downloads Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return