• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
DU Yang, Tang Li-yun, YANG Liu-jun, WANG Xin, BAI Miao-miao. Interface characteristics of frozen soil-structure thawing process based on nuclear magnetic resonance[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2316-2322. DOI: 10.11779/CJGE201912017
Citation: DU Yang, Tang Li-yun, YANG Liu-jun, WANG Xin, BAI Miao-miao. Interface characteristics of frozen soil-structure thawing process based on nuclear magnetic resonance[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2316-2322. DOI: 10.11779/CJGE201912017

Interface characteristics of frozen soil-structure thawing process based on nuclear magnetic resonance

More Information
  • Received Date: April 27, 2019
  • Published Date: December 24, 2019
  • The temperature-thawing causes the permafrost-structure interaction to deteriorate. In order to explore the frozen-soil interaction laws during the thawing process, based on the NMR stratification test technology, the interface unfrozen water content in the process of thawing is tested, and the change of interface temperature-unfrozen water content is obtained along with its variety law. At the same time, the interface shear tests under different normal pressures are carried out to obtain the relationship between interface temperature and shear strength, and further to explore the intrinsic link among interface temperature, unfrozen water content and shear strength. The results show that the T2 curve of NMR stratification can characterize the interface thawing process from the microscopic scale, in other words, the melting of small pore ice crystals begins at the interface of the thawing process. As the melting depth deepens, the ice of the large pores begins to melt until the ice which is at the final interface completely melts. According to the change characteristics of the interface temperature-unfrozen water content-shear strength, the whole thawing process can be divided into three stages: freezing stage, phase change stage and melting stage. The analysis based on the Mohr-Coulomb failure criterion suggests that the internal friction angle and cohesive force of the interface during the thawing process change, which follows the law “as one falls, another rises”. And the internal friction angle decreases first and then increases with the degree of thawing, while the interface cohesive force first increases and then decreases relatively.
  • [1]
    马巍, 王大雁. 中国冻土力学研究50 a回顾与展望[J]. 岩土工程学报, 2012, 34(4): 625-640.
    (MA Wei, WANG Da-yan.Retrospect and prospect of chinese frozen soil mechanics research 50a[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 625-640. (in Chinese))
    [2]
    王博, 刘志强, 赵晓东, 等. 高压正融土与结构接触面剪切力学特性试验研究[J]. 岩土力学, 2017, 38(12): 3540-3546.
    (WANG Bo, LIU Zhi-qiang, ZHAO Xiao-dong, et al.Experimental study on shearing mechanical characteristics of thawing soil and structure interface under high pressure[J]. Rock and Soil Mechanics, 2017, 38(12): 3540-3546. (in Chinese))
    [3]
    LADANYI B.Frozen soil-structure interfaces[J]. Studies in Applied Mechanics, 1995, 42(6): 3-33.
    [4]
    RIST A, PHILLIPS M, SPRINGMAN S M.Inclinable shear box simulations of deepening active layers on perennially frozen scree slopes[J]. Permafrost and Periglacial Processes, 2012, 23(1): 26-38.
    [5]
    WEN Z, YU Q, MA W, et al.Experimental investigation on the effect of fiberglass reinforced plastic cover on adfreeze bond strength[J]. Cold Regions Science & Technology, 2016, 131: 108-115.
    [6]
    LIU J, LÜ P, CUI Y, et al.Experimental study on direct shear behavior of frozen soil-concrete interface[J]. Cold Regions Science and Technology, 2014, 104: 1-6.
    [7]
    LIU J, CUI Y, WANG P, et al.Design and validation of a new dynamic direct shear apparatus for frozen soil[J]. Cold Regions Science and Technology, 2014, 106: 207-215.
    [8]
    石泉彬, 杨平, 王国良. 人工冻结砂土与结构接触面冻结强度试验研究[J]. 岩石力学与工程学报, 2016, 35(10): 2142-2151.
    (SHI Quan-bin, YANG Ping, WANG Guo-liang.Experimental study on freezing strength of artificial frozen sand and structural contact surface[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(10): 2142-2151. (in Chinese))
    [9]
    石泉彬, 杨平, 于可, 等. 冻土与结构接触面次峰值冻结强度试验研究[J]. 岩土力学, 2018(6).(SHI Quan-bin, YANG Ping, YU Ke, et al. Experimental study on secondary peak freezing strength of frozen soil and structural contact surface[J]. Rock and Soil Mechanics, 2018, 39(6): 2025-2034. (in Chinese))
    [10]
    温智, 俞祁浩, 张建明, 等. 青藏直流输变电工程基础冻结强度试验研究[J]. 岩土工程学报, 2013, 35(12): 2262-2267.
    (WEN Zhi, YU Qi-hao, ZHANG Jian-ming, et al.Experimental study on foundation freezing strength of Qinghai-Tibet DC power transmission and transformation project[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2262-2267. (in Chinese))
    [11]
    冷毅飞, 张喜发, 杨凤学, 等. 冻土未冻水含量的量热法试验研究[J]. 岩土力学, 2010, 31(12): 3758-3764.
    (LENG Yi-fei, ZHANG Xi-fa, YANG Feng-xue, et al.A calorimetric test study on the unfrozen water content of frozen soil[J]. Rock and Soil Mechanics, 2010, 31(12): 3758-3764. (in Chinese))
    [12]
    李顺群, 高凌霞, 柴寿喜. 冻土力学性质影响因素的显著性和交互作用研究[J]. 岩土力学, 2012, 33(4): 1173-1177.
    (LI Shun-qun, GAO Ling-xia, CHAI Shou-xi.Study on the significance and interaction of the influencing factors of mechanical properties of frozen soil[J]. Rock and Soil Mechanics, 2012, 33(4): 1173-1177. (in Chinese))
    [13]
    齐吉琳, 马巍. 冻土的力学性质及研究现状[J].岩土力学, 2010, 31(1): 133-143.
    (QI Ji-lin, MA Wei.Mechanical properties and research status of frozen soil[J]. Rock and Soil Mechanics, 2010, 31(1): 133-143. (in Chinese))
    [14]
    WATANABE K, WAKE T.Measurement of unfrozen water content and relative permittivityof frozen unsaturated soil using NMR and TDR[J]. Cold Regions Science & Technology, 2009, 59(1): 0-41.
    [15]
    MOHNKE O, YARAMANCI U.Smooth and block inversion of surface NMR amplitudes and decay times using simulated annealing[J]. Journal of Applied Geophysics, 2002, 50(1): 163-177.
    [16]
    ZHOU K, BIN L I, JIELIN L I, et al.Microscopic damage and dynamic mechanical properties of rock under freeze-thaw environment[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(4): 1254-1261.
    [17]
    LI J L, ZHOU K P, LIU W J, et al.NMR research on deterioration characteristics of microscopic structure of sandstones in freeze-thaw cycles[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(11): 2997-3003.
    [18]
    寇璟媛, 滕继东, 张升. 冻土未冻水含量与孔径分布的试验探究[J]. 西安科技大学学报, 2018(2): 246-252.
    (KOU Jing-yuan, TENG Ji-dong, ZHANG Sheng.Experimental study on unfrozen water content and pore size distribution of frozen soil[J]. Journal of Xi'an University of Science and Technology, 2018(2): 246-252. (in Chinese))
    [19]
    谭龙, 韦昌富, 田慧会, 等. 冻土未冻水含量的低场核磁共振试验研究[J]. 岩土力学, 2015, 36(6): 1566-1572.
    (TAN Long, WEI Chang-fu, TIAN Hui-hui, et al.Low-field NMR experimental study of unfrozen water content in frozen soil[J]. Rock and Soil Mechanics, 2015, 36(6): 1566-1572. (in Chinese))
    [20]
    吉延峻, 贾昆, 俞祁浩, 等. 现浇混凝土-冻土接触面冻结强度直剪试验研究[J]. 冰川冻土, 2017, 39(1): 86-91.
    (JI Yan-jun, JIA Kun, YU Qi-hao, et al.Direct shear tests of freezing strength at the interface between cast-in-situ concrete and frozen soil[J]. Journal of Glaciology and Geocryology, 2017, 39(1): 86-91. (in Chinese))
    [21]
    李广信. 高等土力学[M]. 北京: 清华大学出版社, 2016.
    (LI Guang-xin.Advanced soil mechanics[M]. Beijing: Tsinghua University Press, 2016. (in Chinese))
    [22]
    何鹏飞, 马巍, 穆彦虎, 等. 冻土-混凝土界面冻结强度特征与形成机理研究[J]. 农业工程学报, 2018, 34(23): 127-133.
    (HE Peng-fei, MA Wei, MU Yan-hu, et al.Study on freezing strength characteristics and formation mechanism of frozen soil-concrete interface[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(23): 127-133. (in Chinese))
    [23]
    徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001.
    (XU Xue-zu, WANG Jia-cheng, ZHANG Li-xin.Frozen soil physics[M]. Beijing: Science Press, 2001. (in Chinese))
  • Cited by

    Periodical cited type(12)

    1. 李贝贝. 强动压巷道底板变形破坏特征及控制技术研究. 山东煤炭科技. 2025(01): 1-4+11 .
    2. 毕智强,于振亚,张涛. 深井动压软岩巷道底鼓变形破坏机理与防治技术. 陕西煤炭. 2025(04): 84-88+113 .
    3. 伊丙鼎. 煤层水仓围岩变形破坏特征及控制技术研究. 煤炭工程. 2024(03): 117-123 .
    4. 肖同强,王泽源,刘发义,代晓亮,赵帅,余子豪. 深部强动压巷道底鼓控制机理及技术研究. 采矿与安全工程学报. 2024(04): 666-676 .
    5. 丁维波,王丹影,闫医慧. 回采巷道底鼓机理及防治技术研究. 煤炭技术. 2024(08): 23-27 .
    6. 朱国保,董垠枫. 非均质围岩隧道断面的施工关键技术研究. 四川建筑. 2024(05): 200-201 .
    7. 耿铭,孙静. 厚硬顶板悬顶致灾机理及切顶控制技术研究. 工矿自动化. 2024(11): 132-141 .
    8. 柴敬,韩志成,雷武林,张丁丁,马晨阳,孙凯,翁明月,张有志,丁国利,郑忠友,张寅,韩刚. 回采巷道底鼓演化过程的分布式光纤实测研究. 煤炭科学技术. 2023(01): 146-156 .
    9. 吕情绪,曹军,高亮. 重复采动回采巷道变形机理及稳定控制. 中国矿业. 2023(05): 96-103 .
    10. 丁自伟,王少轩,王庆阳,王耀声,王春斌,李军岐,邸广强,李亮. 软岩巷道底鼓机理及其稳定性控制研究. 煤炭工程. 2023(07): 102-109 .
    11. 吕志强,黄亚军,景明,徐啸川. 深部软岩巷道变形破坏机理及支护技术. 能源与环保. 2023(11): 280-286 .
    12. 杨晓炜. 深部软岩大断面巷道大变形控制技术研究. 能源与环保. 2023(11): 312-318 .

    Other cited types(16)

Catalog

    Article views (292) PDF downloads (221) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return