• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Jian, GAO Jing-yu, LI Yan-feng, YUAN Jun, CHENG Dong-xing, TAN Qing-hai. Model tests on uplift behaviors of belled pier foundation in coarse-grained salty soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2079-2085. DOI: 10.11779/CJGE201911013
Citation: XU Jian, GAO Jing-yu, LI Yan-feng, YUAN Jun, CHENG Dong-xing, TAN Qing-hai. Model tests on uplift behaviors of belled pier foundation in coarse-grained salty soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2079-2085. DOI: 10.11779/CJGE201911013

Model tests on uplift behaviors of belled pier foundation in coarse-grained salty soils

More Information
  • Received Date: March 03, 2019
  • Published Date: November 24, 2019
  • Based on the uplift model tests, the uplift working behaviors of belled pier foundation with different thicknesses and crystalline and dissolved states of coarse-grained salty soils are obtained. The results show that the uplift loads lead to obvious ground heave surrounding the belled pier foundation, which induces circumferential and radial cracks in the soils around the foundation. Moreover, the ground heave extent is approximately circular as the uplift loads increase. The uplift displacement decreases with the growing distance from the center of foundation, and the uplift displacement gradient increases with the increasing uplift loads. The load-displacement curves exhibit a typical softening tendency. The uplift bearing capacity of salty soils in the crystalline state increases at larger thickness of coarse-grained salty soils, and is also higher for the salty soils in crystalline state than that for the salty soils in dissolved state. The geometric shape of failure surface can be described by a straight line equation with slope in the underlying coarse-grained soils different from that in the surface salty soils. The uplift angles of the surface salty soils in crystalline and dissolved states are approximately 34°and 18°, respectively, while 32°for the underlying soils without salt.
  • [1]
    华遵孟, 沈求武. 西北内陆盆地粗颗粒盐渍土研究[J]. 工程勘察, 2001(1): 28-31.
    (HUA Zun-meng, SHEN Qiu-wu.Study on coarse saline soil of north-western inland basin[J]. Geotechnical Investigation & Surveying, 2001(1): 28-31. (in Chinese))
    [2]
    程东幸, 许健, 刘志伟, 等. 粗颗粒盐渍土大型剪切强度试验研究[J]. 水利与建筑工程学报, 2017, 15(5): 149-153.
    (CHENG Dong-xing, XU Jian, LIU Zhi-wei, et al.Experiments on large-scale direct shear strength of coarse-grained saline soil[J]. Journal of Water Resources and Architectural Engineering, 2017, 15(5): 149-153. (in Chinese))
    [3]
    鲁先龙, 乾增珍, 童瑞铭, 等.戈壁地基扩底掏挖基础抗拔试验及其位移计算[J]. 岩土力学, 2014, 35(7): 1871-1877.
    (LU Xian-long, QIAN Zeng-zhen, TONG Rui-ming, et al.Uplift field tests and displacement prediction on belled piers in Gobi[J]. Rock and Soil Mechanics, 2014, 35(7): 1871-1877. (in Chinese))
    [4]
    刘志伟, 程东幸, 张希宏. 粗颗粒盐渍土回填碾压试验研究[J]. 工程勘察, 2012(6): 18-21.
    (LIU Zhi-wei, CHENG Dong-xing, ZHANG Xi-hong.Experimental study on back filling and rolling compaction of coarse-grained salty soil[J]. Geotechnical Investigation & Surveying, 2012(6): 18-21. (in Chinese))
    [5]
    DL/T 5219—2014架空输电线路基础设计技术规程[S]. 2014.
    (DL/T 5219—2014 Technical code for design of foundation of overhead transmission line[S]. 2014. (in Chinese))
    [6]
    郝冬雪, 张永建, 陈榕, 等. 输电线路掏挖基础极限上拔承载力变分解法[J]. 岩土力学, 2015, 36(1): 163-170.
    (HAO Dong-xue, ZHANG Yong-jian, CHEN Rong, et al.Variational solution of ultimate uplift capacity for excavated foundation of transmission tower[J]. Rock and Soil Mechanics, 2015, 36(1): 163-170. (in Chinese))
    [7]
    GURUNG S B, NAKAZIMA Y, SAKAJO S, et al.Centrifugal modeling of enlarged base foundation subjected to pull-out force[J]. Soils and Foundations, 1998, 38(4): 105-113.
    [8]
    CHAE D, CHO W, NA H Y.Uplift capacity of belled pile in weathered sandstone[J]. International Journal of Offshore and Polar Engineering, 2012, 22(4): 297-305.
    [9]
    NAZIR R, MOAYEDI H, PRATIKSO A, et al.The uplift load capacity of an enlarged base pier embedded in dry sand[J]. Arabian Journal of Geosciences, 2015, 8(9): 7285-7296.
    [10]
    DICKIN E A, LEUNG C F.The influence of foundation geometry on the uplift behaviour of piles with enlarged bases[J]. Canadian Geotechnical Journal, 2011, 29(3): 498-505.
    [11]
    LU X L, QIAN Z Z, YANG W Z.Axial uplift behaviour of belled piers in sloping ground[J]. Geotechnical Testing Journal, 2017, 40(4): 579-590.
    [12]
    刘生奎, 李永祥. 掏挖基础在西北戈壁地区的应用探讨[J].电网与水力发电进展, 2008, 24(1): 46-49.
    (LIU Sheng-kui, LI Yong-xiang.Research on application of excavated foundation for steel towers in northwest stone desert[J]. Advances of Power System & Hydroelectric Engineering, 2008, 24(1): 46-49. (in Chinese))
    [13]
    安维忠, 李永祥, 刘生奎. 输电线路戈壁碎石土地基现场直剪实验[J]. 电力建设, 2010, 31(5): 66-69.
    (AN Wei-zhong, LI Yong-xiang, LIU Sheng-kui.Field direct shearing tests of gobi gavel soil in northwest for 750 kV transmission line engineering[J]. Electric Power Construction, 2010, 31(5): 66-69. (in Chinese))
    [14]
    鲁先龙, 郑卫锋, 程永锋, 等. 戈壁滩输电线路碎石土地基全掏挖基础试验研究[J]. 岩土工程学报, 2009, 31(11): 1779-1783.
    (LU Xian-long, ZHENG Wei-feng, CHENG Yong-feng, et al.Experimental study on excavated foundation of transmission line gravelly soils in gobi area of Northwest China[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(11): 1779-1783. (in Chinese))
    [15]
    QIAN Z Z, LU X L, HAN X, et al.Interpretation of uplift load tests on belled piers in Gobi gravel[J]. Canadian Geotechnical Journal, 2015, 52(7): 992-997.
  • Cited by

    Periodical cited type(11)

    1. 李大勇,吴沁儒,张雨坤. 吸力基础沉贯及拔出可视化模型实验系统研发及应用. 实验技术与管理. 2025(01): 59-65 .
    2. 李大勇,黄凌昰,张雨坤,吴学震. 海上风电吸力基础在分层土中的沉贯特性研究综述. 海洋工程. 2023(01): 110-127 .
    3. 范夏玲. 海上风电吸力桩基础破坏包络面理论研究. 能源与环境. 2023(06): 60-62+110 .
    4. LI Da-yong,HOU Xin-yu,ZHANG Yu-kun,MA Shi-li,LI Shan-shan. Studies on Suction-Assisted Installation Behavior of Suction Caissons in Clay Under Various Undrained Shear Strengths. China Ocean Engineering. 2023(06): 989-999 .
    5. 张雨坤,秦廷辉,李大勇,王冲冲. 分层土中裙式吸力基础吸力沉贯特性模型试验研究. 岩土力学. 2022(05): 1317-1325 .
    6. 丁红岩,许云龙,张浦阳,乐丛欢. 复合筒型基础临界负压试验分析. 天津大学学报(自然科学与工程技术版). 2022(06): 603-610 .
    7. 马士力,谢立全. 循环荷载下粉土中吸力基础承载特性试验研究. 同济大学学报(自然科学版). 2022(10): 1443-1450+1530 .
    8. 李佳禧,张雨坤,李大勇. 砂土中裙式吸力基础注水拔出渗流规律数值模拟. 人民长江. 2022(11): 163-169 .
    9. HUANG Ling-xia,ZHANG Yu-kun,LI Da-yong. Experimental Studies on Extraction of Modified Suction Caisson(MSC) in Sand by Reverse Pumping Water. China Ocean Engineering. 2021(02): 272-280 .
    10. 秦源康,刘康,陈国明,张爱霞,朱敬宇,夏开朗. 海洋水合物地层导管吸力锚贯入安装负压窗口分析. 石油钻采工艺. 2021(06): 737-743 .
    11. 李逸凡,李大勇,张雨坤,高玉峰. 吸力基础沉贯过程中桶-土界面力学机理研究进展. 防灾减灾工程学报. 2020(05): 828-840 .

    Other cited types(8)

Catalog

    Article views (244) PDF downloads (108) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return