Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIANG Ke, CHEN Guo-xing, WANG Yan-zhen, QIN You. Coupled shear strain-damage state model for prediction of shear modulus of coral sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1863-1871. DOI: 10.11779/CJGE201910010
Citation: LIANG Ke, CHEN Guo-xing, WANG Yan-zhen, QIN You. Coupled shear strain-damage state model for prediction of shear modulus of coral sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1863-1871. DOI: 10.11779/CJGE201910010

Coupled shear strain-damage state model for prediction of shear modulus of coral sand

More Information
  • Received Date: December 02, 2018
  • Published Date: October 24, 2019
  • Four series of cyclic triaxial tests with different loading forms are conducted on saturated coral sand from Nansha Islands. The relationships between shear modulus ratio G1st/G0 of the first loading cycle and shear strain amplitude γa under different relative densities Dr and effective confining pressures σ0 are studied. Dr shows no influence on G1st/G0, and G1st/G0 increases with the increasing σ0. When γa is larger than 3×10-4, the G1st/G0 -γacurves obtained from the strain-controlled multistage loading tests (UMγ-CTX) are higher than those obtained from strain-controlled single-stage loading tests (USγ-CTX) because of the change of the soil structure and the relative density during the reconsolidation process of UMγ-CTX. A new damage parameter Pd is proposed based on the elastic strain energy theory, and the relationships between shear modulus ratio G/G0 and damage parameter Pd under different loading forms are studied. The (1-G/G0) - Pd curves are almost linear in the log-log coordinate, and the slopes are dependent on the shear strain amplitude γa and the maximum shear strain amplitude γa.max. Based on the G1st/G0 -γaand G/G0 - Pd relationships, a new G/G0 prediction model is proposed to predict the shear modulus of coral sand considering the effect of coupled shear strain amplitude and damage state.
  • [1]
    KOKUSHO T.Cyclic triaxial test of dynamic soil properties for wide strain range[J]. Soils and Foundations, 1980, 20(2): 45-60.
    [2]
    梁珂, 陈国兴, 何杨, 等. 基于相关函数理论的动模量和阻尼比计算新方法[J]. 岩土力学, 2019, 40(4): 1368-1376.
    (LIANG Ke, CHEN Guo-xing, HE Yang, et al.An innovative method for the calculation of dynamic modulus and damping ratio based on the theory of correlation function[J]. Rock and Soil Mechanics, 2019, 40(4): 1368-1376. (in Chinese))
    [3]
    MENQ F.Dynamic properties of sandy and gravelly soils[D]. Austin: The University of Texas at Austin, 2003.
    [4]
    HARDIN B O, DRNEVICH V P.Shear modulus and damping in soils: design equations and curves[J]. Journal of Soil Mechanics and Foundations Division, 1972, 98(SM7): 667-692.
    [5]
    MARTIN P P, SEED H B.One-dimensional dynamic ground response analyses[J]. Journal of the Geotechnical Engineering Division, 1982, 108(7): 935-952.
    [6]
    MATASOVIC N, VUCETIC M.Cyclic characterization of liquefiable sands[J]. Journal of Geotechnical Engineering, 1993, 11(119): 1805-1822.
    [7]
    DARENDELI M B.Develope of a new family of normalized modulus reduction and material damping curves[D]. Austin: The University of Texas at Austin, 2001.
    [8]
    CHEN G, ZHOU Z, SUN T, et al.Shear modulus and damping ratio of sand-gravel mixtures over a wide strain range[J]. Journal of Earthquake Engineering, 2019, 23(8): 1407-1440.
    [9]
    POLITO C P, GREEN R A, LEE J.Pore pressure generation models for sands and silty soils subjected to cyclic loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(10): 1490-1500.
    [10]
    JAFARIAN Y, TOWHATA I, BAZIAR M H, et al.Strain energy based evaluation of liquefaction and residual pore water pressure in sands using cyclic torsional shear experiments[J]. Soil Dynamics and Earthquake Engineering, 2012, 35: 13-28.
    [11]
    潘坤, 杨仲轩. 不规则动荷载作用下砂土孔压特性试验研究[J]. 岩土工程学报, 2017, 39(增刊1): 79-84.
    (PAN Kun, YANG Zhong-xuan.Pore pressure characteristics of sand subjected to irregular loadings[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 79-84. (in Chinese))
    [12]
    赵丁凤, 梁珂, 陈国兴, 等. 剪切-体积应变耦合的孔压增量模型试验研究[J]. 岩土力学, 2019, 40(5): 1832-1840.
    (ZHAO Ding-feng, LIANG Ke, CHEN Guo-xing, et al.Experimental investigation on a new incremental excess pore pressure model characterized by cyclic shear-volume coupling[J]. Rock and Soil Mechanics, 2019, 40(5): 1832-1840. (in Chinese))
    [13]
    ASTM D2487—11 Standard practice for classification of soils for engineering purposes[S]. 2011.
    [14]
    吴琪, 陈国兴, 周正龙, 等. 细粒含量对细粒-砂粒-砾粒混合料动强度的影响[J]. 岩土工程学报, 2017, 39(6): 1038-1047.
    (WU Qi, CHEN Guo-xing, ZHOU Zheng-long, et al.Influences of fines content on cyclic resistance ratio of fines-sand-gravel mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1038-1047. (in Chinese))
    [15]
    王谦, 李娜, 王平, 等. 甘南地区黄土的动模量与阻尼比特性研究[J]. 岩土工程学报, 2017, 39(增刊1): 192-197.
    (WANG Qian, LI Na, WANG Ping, et al.Behaviors of dynamic modulus and damping ratio of loess in Gannan region of Gansu Province[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 192-197. (in Chinese))
    [16]
    李瑞山, 陈龙伟, 袁晓铭, 等. 荷载频率对动模量阻尼比影响的试验研究[J]. 岩土工程学报, 2017, 39(1): 71-80.
    (LI Rui-shan, CHEN Long-wei, YUAN Xiao-ming, et al.Experimental study on influences of different loading frequencies on dynamic modulus and damping ratio[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 71-80. (in Chinese))
    [17]
    孔令伟, 臧濛, 郭爱国. 湛江黏土动剪切模量的结构损伤效应与定量表征[J]. 岩土工程学报, 2017, 39(12): 2149-2157.
    (KONG Ling-wei, ZANG Meng, GUO Ai-guo.Structural damage effect on dynamic shear modulus of Zhanjiang clay and quantitative characterization[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2149-2157. (in Chinese))
    [18]
    梁珂, 何杨, 陈国兴. 南沙珊瑚砂的动剪切模量和阻尼比特性试验研究[J]. 岩土力学, 待刊. (LIANG Ke, HE Yang, CHEN Guo-xing. Experimental study on dynamic shear modulus and damping ratio characteristics of coral sand from Nansha Island[J]. Rock and Soil Mechanics, in press.
    [19]
    CHEN G X, ZHAO D F, CHEN W Y, JUANG C H.Excess pore-water pressure generation in cyclic undrained testing[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(7): 04019022.
  • Cited by

    Periodical cited type(11)

    1. 蔺云宏,郝云龙,李明宇,田帅,常瑞成,刘新新. 基坑开挖引起下卧地铁盾构隧道变形的统计与预测方法研究. 河南科学. 2025(03): 337-346 .
    2. 张毅. 软弱地层下的基坑支护方案比选. 山西建筑. 2024(17): 97-100 .
    3. 王伟,邓松峰. 深厚软土区邻近地铁深基坑工程关键技术研究. 江苏建筑. 2024(05): 120-126 .
    4. 刘朝阳,蒋凯,梁禹. 基于Kerr地基模型的覆土荷载引起既有装配式地铁车站沉降分析. 现代隧道技术. 2024(05): 71-78 .
    5. 贺旭. 软弱地层基坑开挖支护方案比选研究. 铁道建筑技术. 2023(05): 100-104+125 .
    6. 张继新. 浅埋扩挖隧道变形处理技术分析. 交通世界. 2023(15): 138-140 .
    7. 邓彬,张磊,郑鹏鹏,陈保国,邹顺清. 深基坑开挖与内支撑调节对邻近沉井影响规律试验研究. 建筑科学与工程学报. 2023(05): 174-182 .
    8. 马少俊,王乔坎,苏凤阳,徐建章,郑伟,陈思源. 邻地铁盾构隧道超长基坑支护技术——以杭州大会展中心基坑工程为例. 建筑科学. 2022(05): 179-186 .
    9. 王丽萍. 水平间距对涉水隧道土体变形影响的模拟分析. 黑龙江水利科技. 2022(08): 74-76+108 .
    10. 冯文刚. 涉水隧道开挖对土体沉降影响分析. 黑龙江水利科技. 2022(08): 89-92 .
    11. 祖华. 城市地铁隧道开挖及变形控制的数值模拟研究. 山西建筑. 2022(21): 135-137 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return