• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HE Wei, LIU Jian-Feng, YIN Ping-bao, CHEN Yan-hu, YANG Wen-bin, CHEN Yu-lin, WU Yong-chang. Properties and field tests of industrial ferro-nickel slag for roads[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1809-1816. DOI: 10.11779/CJGE201910004
Citation: HE Wei, LIU Jian-Feng, YIN Ping-bao, CHEN Yan-hu, YANG Wen-bin, CHEN Yu-lin, WU Yong-chang. Properties and field tests of industrial ferro-nickel slag for roads[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1809-1816. DOI: 10.11779/CJGE201910004

Properties and field tests of industrial ferro-nickel slag for roads

More Information
  • Received Date: February 11, 2019
  • Published Date: October 24, 2019
  • The adaptability of industrial ferro-nickle slag as road fill is studied using the laboratory and field tests. Firstly, chemical compositions of industrial ferro-nickel slag from various districts are tested and statistically analyzed to examine the main components and the relevant variability. The slag is then tested in laboratory to obtain particle characteristics (under different compaction efforts), shear strength index, CBR, percentage of powered slag in autoclave and resilient modulus, thus the mechanical behavior and index as road fills are evaluated. Based on this, full-scale field tests on ferro-nickel slag embankment are designed and implemented. The embankment settlement, deflection and pore water pressure are monitored during and after construction, and harmful substances are detected to assess their environmental impact. The study indicates that the ferro-nickel slags is largely composed of three components: SiO2, MgO, and CaO. The MgO and CaO at free stage are expansive to some extent, therefore the soaked expansion of the slag shall be tested before adopted in roads. The ferro-nickel slag is defined as poorly graded gravel, with minor change of grading under standard compaction effort. The behavior of the slag as road fill can be improved by being mixed with clay of 10%~20% by mass. The field tests indicate that the ferro-nickel slag can be successfully applied in reinforced embankment. The monitoring settlement becomes stable at the initial stage of construction, and minor settlement occurs thereafter. The slag is highly premeable, thus the excess pore water pressure can be dissipiated immediately. According to the detected harmful substances, the ferro-nickel slag is a general industrial solid waste, which is conforming to the environmental requirements as road fills, and can be buried directly (no pre-processing required). According to the mechanical and environmental tests, the ferro-nickel slag is able to be adopted as road fills after appropriate improvement.
  • [1]
    BEIDOU X, RENFEI L, XINYU Z, et al.Constraints and opportunities for the recycling of growing ferronickel slag in China[J]. Resources, Conservation and Recycling, 2018, 139: 15-16.
    [2]
    JTG D30—2015 公路路基设计规范[S]. 2015.
    (JTG D30—2015 Specifications for design of highway subgrades[S]. 2015. (in Chinese))
    [3]
    KOKUBU K, KAWASE K.Utilization of ferro-nickel slag as fine aggregates for concrete[J]. Concrete Journal, 1994, 32(2): 15-22.
    [4]
    KOKUBU K, KAWASE K.Guidelines for construction using ferronickel slag fine aggregate congregate[R]. Concrete Library of JSCE, 1994.
    [5]
    SAHA A K, SARKER P K.Compressive strength of mortar containing ferronickel slag as replacement of natural sand[J]. Procedia Engineering, 2017(171): 689-694.
    [6]
    SAHA A K, KHAN M N N, SARKER P K. Value added utilization of by-product electric furnace ferronickel slag as construction materials: a review[J]. Resources Conservation & Recycling, 2018(134): 10-24.
    [7]
    WANG G.Hot-mix asphalt that contains nickel slag aggregate - laboratory evaluation of use in highway construction[J]. Transportation Research Record Journal of the Transportation Research Board, 2011(2208): 1-8.
    [8]
    WANG G.Slag use in highway construction-the philosophy and technology of its utilization[J]. International Journal of Pavement Research & Technology, 2011, 4(2): 97-103.
    [9]
    TANGAHU B V, WARMADEWANTHI I, SAPTARINI D, et al.Ferronickel slag performance from reclamation area in Pomalaa, Southeast Sulawesi, Indonesia[J]. Advances in Chemical Engineering & Science, 2015, 5(3): 408-412.
    [10]
    DEMOTICA J S, JR R F A, MALALUAN R M, et al. Characterization and leaching assessment of ferronickel slag from a smelting plant in Iligan City, Philippines[J]. Physics of Fluids, 2012, 24(7): 470-474.
    [11]
    HUANG D, CHEN S H, MON H H.The preliminary study on re-utilization of ferrous-nickel slag to replace conventional construction material for road construction (sub-grade layer improvement)[J]. Advanced Materials Research, 2013, 723: 694-702.
    [12]
    KANG S S, PARK K, KIM D.Potential soil contamination in areas where ferronickel slag is used for reclamation work[J]. Materials, 2014, 7(10): 7157-7172.
    [13]
    GB/T 25824—2010 道路用钢渣[S]. 2010.
    (GB/T 25824—2010 Steel slag for road[S]. 2010. (in Chinese))
    [14]
    FIDANCEVSKA E, MANGUTOVA B, MILOSEVSKI D, et al.Obtaining of dense and highly porous ceramic materials from metallurgical slag[J]. Science of Sintering, 2003, 35(2): 85-91.
    [15]
    MARAGKOS I, GIANNOPOULOU I P, PANIAS D.Synthesis of ferronickel slag-based geopolymers[J]. Minerals Engineering, 2009, 22(2): 196-203.
    [16]
    SATO T, WATANABA K, OTA A, et al.Ifluence of excessive bleeding on frost susceptibility of concrete incorporating ferronickel slag as gggregates[C]// 36th Conference on Our World in Concrete & Structures. Singapore, 2011.
    [17]
    KOMNITSAS K, ZAHARAKI D, BARTZAS G.Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers[J]. Applied Clay Science, 2013, 73(1): 103-109.
    [18]
    LEMONIS N, TSAKIRIDIS P E, KATSIOTIS N S, et al.Hydration study of ternary blended cements containing ferronickel slag and natural pozzolan[J]. Construction & Building Materials, 2015, 81(11): 130-139.
    [19]
    CHOI Y C, CHOI S.Alkali-silica reactivity of cementitious materials using ferro-nickel slag fine aggregates produced in different cooling conditions[J]. Construction & Building Materials, 2015, 99: 279-287.
    [20]
    SAHA A K, SARKER P K.Expansion due to alkali-silica reaction of ferronickel slag fine aggregate in OPC and blended cement mortars[J]. Construction & Building Materials, 2016, 123: 135-142.
    [21]
    GB50021—2001 岩土工程勘察规范[S]. 2009. (GB50021—2001 Code for investigation of geotechnical engineering[S]. 2009. (in Chinese))
    [22]
    ASTM D2487—11 Unified soil classification system[S]. 2011.
    [23]
    JTGE40—2007 公路土工试验规程[S]. 2007.
    (JTGE40—2007 Test methods of soils for highway engineering[S]. 2007. (in Chinese))
    [24]
    聂志红. 镍铁渣作为地基回填材料与路基填料的可行性试验报告TM20180028—0002[R]. 长沙: 湖南铁院土木工程检测有限公司, 2018.
    (NIE Zhi-hong.Feasibility research report of nickel ferro slag utilized as foundation backfill material and subgrade-TM20180028—0002[R]. Changsha: Hunan Railway College-Civil Engineering Testing Co, Ltd, 2018. (in Chinese))
    [25]
    段庄, 但秋君, 李智文. 珠海(阳江)合作共建园区生活配套区填土工程施工设计说明(岩01)[R]. 珠海: 珠海市规划设计研究院, 2017.
    (DUAN Zhuang, DAN QIU Jun, LI Zhi-wen.Zhuhai (Yangjiang) co-construction park construction supporting area construction design description (Ran 01) [R]. Zhuhai: Zhuhai Planning and Design Institute, 2017. (in Chinese))
    [26]
    张旭. 粤环境监测LB字(2016)第39号之1[R]. 广州: 广东省环境保护厅, 2016.
    (ZHANG Xu. Guangdong environmental monitoring LB (2016) No. 39-1[R]. Guangzhou: Guangdong Provincial Department of Environmental Protection, 2016. (in Chinese))
    [27]
    环境保护部华南环境科学研究所. 华环监测字S2017第096号[R]. 广州: 环境保护部华南环境科学研究所, 2017.
    (Ministry of Environmental Protection-South China Institute of Environmental Sciences. Huahuan monitoring report S2017 No. 096 [R]. Guangzhou: Ministry of Environmental Protection-South China Institute of Environmental Sciences, 2017. (in Chinese))
    [28]
    GB 5085.3—2007 危险废物鉴别标准浸出毒性鉴别[S]. 2007. (GB 5085.3—2007 Identification criteria for hazardous wastes identification of leaching toxicity[S]. 2007. (in Chinese))
    [29]
    环发[2004] 75号危险废物安全填埋处置工程建设技术要求[S]. 2004.
    (Huanfa [2004] No. 75 technical requirements for safe landfill disposal construction of hazardous wasteuanfa [2004] No. 75 technical requirements for safe landfill disposal construction of hazardous waste[S]. 2004. (in Chinese))
  • Cited by

    Periodical cited type(21)

    1. 魏永杰,陈伟利. 纤维增强水泥土搅拌桩芯样的强度特征与本构模型. 水电能源科学. 2024(04): 103-106 .
    2. 朱彬,裴华富,杨庆,卢萌盟,王涛. 基于随机有限元法的波致海床响应概率分析. 岩土力学. 2023(05): 1545-1556 .
    3. 周文辉,肖宁,占辉,贺佐跃. 广州南沙某桥头路基处理方案对比及其工后沉降分析. 科技和产业. 2022(03): 370-376 .
    4. 陈利宏,杜军,唐灵敏,熊勃,姚嘉敏. 不同养护龄期下水泥掺入比对水泥土直剪特性的影响. 广东土木与建筑. 2022(05): 35-39 .
    5. 于晓夫. 公路施工质量控制与软土地基处理技术. 工程技术研究. 2022(10): 158-160 .
    6. 王涛,马骏,周国庆,许大晴,季雨坤. 冻土地层三维空间变异性表征及冻结帷幕温度特征值演化过程研究. 岩石力学与工程学报. 2022(10): 2094-2108 .
    7. 黄毫春,昌郑,吴春鹏,姚嘉敏,熊勃,刘飞禹. 纤维长度与掺量对加筋水泥土直剪特性的影响研究. 施工技术(中英文). 2022(21): 54-59 .
    8. 马冬冬,马芹永,黄坤,张蓉蓉. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究. 岩土工程学报. 2021(03): 572-578 . 本站查看
    9. 郑永胜,田盎然,尹鹏,范韬,刘浩宇,居俊,唐强. 复杂环境下超宽深大基坑设计与施工技术分析——以X352县道改扩建工程项目为例. 盐城工学院学报(自然科学版). 2021(01): 60-65 .
    10. 周禹暄,胡俊,林小淇,李珂,王志鑫. X型与圆形冻结管单管冻结温度场数值对比分析. 海南大学学报(自然科学版). 2021(02): 198-203 .
    11. 张新建,唐昌意,刘智. 淤泥水泥土室内配合比试验及成桩效果分析. 公路. 2021(06): 81-84 .
    12. 秦堃. 深厚软土地基联合加固技术模型试验研究. 粉煤灰综合利用. 2021(04): 35-39 .
    13. 张卫中,闫少峰,黄学军,何进江,康钦容. 有机粉质粘土灌注桩孔壁垮塌机理及控制研究. 武汉理工大学学报. 2021(05): 80-84+91 .
    14. 刘海桃,徐志豪,邵朝阳. 有机质对水泥改良红黏土的力学特性影响及微观机理分析. 土工基础. 2021(05): 645-648 .
    15. 周文辉,肖宁,贺佐跃. 广州南沙某路基桩帽下脱空机理分析. 河南科学. 2021(11): 1783-1789 .
    16. 马子鹏. 临江富水环境大型过江通道基坑降水施工关键技术研究. 居舍. 2020(29): 63-66+72 .
    17. 吴雨薇,胡俊,王志鑫,曾东灵,汪树成. 水下清淤人工冻结板温度场数值分析. 煤田地质与勘探. 2019(02): 168-176 .
    18. 黄磊,刘文博,吴雨薇,陈璐,胡俊. 南宁地铁东滨区间联络通道冻结法加固施工监测分析研究. 森林工程. 2019(06): 77-85 .
    19. 吴雨薇,刘文博,胡俊,王志鑫,曾东灵. 基于温度场分析的新型水下清淤装置数值研究. 水利水电技术. 2019(11): 103-109 .
    20. 胡俊,张皖湘,汪磊,刘文博,王志鑫. 防护网与液氮冻土墙复合基坑支护技术研究. 海南大学学报(自然科学版). 2019(04): 359-367 .
    21. 郑俊杰,乔雅晴,章荣军. 被动加固区参数变异性对软土深基坑变形行为的影响. 土木与环境工程学报(中英文). 2019(06): 1-8 .

    Other cited types(8)

Catalog

    Article views PDF downloads Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return