Citation: | HE Wei, LIU Jian-Feng, YIN Ping-bao, CHEN Yan-hu, YANG Wen-bin, CHEN Yu-lin, WU Yong-chang. Properties and field tests of industrial ferro-nickel slag for roads[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1809-1816. DOI: 10.11779/CJGE201910004 |
[1] |
BEIDOU X, RENFEI L, XINYU Z, et al.Constraints and opportunities for the recycling of growing ferronickel slag in China[J]. Resources, Conservation and Recycling, 2018, 139: 15-16.
|
[2] |
JTG D30—2015 公路路基设计规范[S]. 2015.
(JTG D30—2015 Specifications for design of highway subgrades[S]. 2015. (in Chinese)) |
[3] |
KOKUBU K, KAWASE K.Utilization of ferro-nickel slag as fine aggregates for concrete[J]. Concrete Journal, 1994, 32(2): 15-22.
|
[4] |
KOKUBU K, KAWASE K.Guidelines for construction using ferronickel slag fine aggregate congregate[R]. Concrete Library of JSCE, 1994.
|
[5] |
SAHA A K, SARKER P K.Compressive strength of mortar containing ferronickel slag as replacement of natural sand[J]. Procedia Engineering, 2017(171): 689-694.
|
[6] |
SAHA A K, KHAN M N N, SARKER P K. Value added utilization of by-product electric furnace ferronickel slag as construction materials: a review[J]. Resources Conservation & Recycling, 2018(134): 10-24.
|
[7] |
WANG G.Hot-mix asphalt that contains nickel slag aggregate - laboratory evaluation of use in highway construction[J]. Transportation Research Record Journal of the Transportation Research Board, 2011(2208): 1-8.
|
[8] |
WANG G.Slag use in highway construction-the philosophy and technology of its utilization[J]. International Journal of Pavement Research & Technology, 2011, 4(2): 97-103.
|
[9] |
TANGAHU B V, WARMADEWANTHI I, SAPTARINI D, et al.Ferronickel slag performance from reclamation area in Pomalaa, Southeast Sulawesi, Indonesia[J]. Advances in Chemical Engineering & Science, 2015, 5(3): 408-412.
|
[10] |
DEMOTICA J S, JR R F A, MALALUAN R M, et al. Characterization and leaching assessment of ferronickel slag from a smelting plant in Iligan City, Philippines[J]. Physics of Fluids, 2012, 24(7): 470-474.
|
[11] |
HUANG D, CHEN S H, MON H H.The preliminary study on re-utilization of ferrous-nickel slag to replace conventional construction material for road construction (sub-grade layer improvement)[J]. Advanced Materials Research, 2013, 723: 694-702.
|
[12] |
KANG S S, PARK K, KIM D.Potential soil contamination in areas where ferronickel slag is used for reclamation work[J]. Materials, 2014, 7(10): 7157-7172.
|
[13] |
GB/T 25824—2010 道路用钢渣[S]. 2010.
(GB/T 25824—2010 Steel slag for road[S]. 2010. (in Chinese)) |
[14] |
FIDANCEVSKA E, MANGUTOVA B, MILOSEVSKI D, et al.Obtaining of dense and highly porous ceramic materials from metallurgical slag[J]. Science of Sintering, 2003, 35(2): 85-91.
|
[15] |
MARAGKOS I, GIANNOPOULOU I P, PANIAS D.Synthesis of ferronickel slag-based geopolymers[J]. Minerals Engineering, 2009, 22(2): 196-203.
|
[16] |
SATO T, WATANABA K, OTA A, et al.Ifluence of excessive bleeding on frost susceptibility of concrete incorporating ferronickel slag as gggregates[C]// 36th Conference on Our World in Concrete & Structures. Singapore, 2011.
|
[17] |
KOMNITSAS K, ZAHARAKI D, BARTZAS G.Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers[J]. Applied Clay Science, 2013, 73(1): 103-109.
|
[18] |
LEMONIS N, TSAKIRIDIS P E, KATSIOTIS N S, et al.Hydration study of ternary blended cements containing ferronickel slag and natural pozzolan[J]. Construction & Building Materials, 2015, 81(11): 130-139.
|
[19] |
CHOI Y C, CHOI S.Alkali-silica reactivity of cementitious materials using ferro-nickel slag fine aggregates produced in different cooling conditions[J]. Construction & Building Materials, 2015, 99: 279-287.
|
[20] |
SAHA A K, SARKER P K.Expansion due to alkali-silica reaction of ferronickel slag fine aggregate in OPC and blended cement mortars[J]. Construction & Building Materials, 2016, 123: 135-142.
|
[21] |
GB50021—2001 岩土工程勘察规范[S]. 2009. (GB50021—2001 Code for investigation of geotechnical engineering[S]. 2009. (in Chinese))
|
[22] |
ASTM D2487—11 Unified soil classification system[S]. 2011.
|
[23] |
JTGE40—2007 公路土工试验规程[S]. 2007.
(JTGE40—2007 Test methods of soils for highway engineering[S]. 2007. (in Chinese)) |
[24] |
聂志红. 镍铁渣作为地基回填材料与路基填料的可行性试验报告TM20180028—0002[R]. 长沙: 湖南铁院土木工程检测有限公司, 2018.
(NIE Zhi-hong.Feasibility research report of nickel ferro slag utilized as foundation backfill material and subgrade-TM20180028—0002[R]. Changsha: Hunan Railway College-Civil Engineering Testing Co, Ltd, 2018. (in Chinese)) |
[25] |
段庄, 但秋君, 李智文. 珠海(阳江)合作共建园区生活配套区填土工程施工设计说明(岩01)[R]. 珠海: 珠海市规划设计研究院, 2017.
(DUAN Zhuang, DAN QIU Jun, LI Zhi-wen.Zhuhai (Yangjiang) co-construction park construction supporting area construction design description (Ran 01) [R]. Zhuhai: Zhuhai Planning and Design Institute, 2017. (in Chinese)) |
[26] |
张旭. 粤环境监测LB字(2016)第39号之1[R]. 广州: 广东省环境保护厅, 2016.
(ZHANG Xu. Guangdong environmental monitoring LB (2016) No. 39-1[R]. Guangzhou: Guangdong Provincial Department of Environmental Protection, 2016. (in Chinese)) |
[27] |
环境保护部华南环境科学研究所. 华环监测字S2017第096号[R]. 广州: 环境保护部华南环境科学研究所, 2017.
(Ministry of Environmental Protection-South China Institute of Environmental Sciences. Huahuan monitoring report S2017 No. 096 [R]. Guangzhou: Ministry of Environmental Protection-South China Institute of Environmental Sciences, 2017. (in Chinese)) |
[28] |
GB 5085.3—2007 危险废物鉴别标准浸出毒性鉴别[S]. 2007. (GB 5085.3—2007 Identification criteria for hazardous wastes identification of leaching toxicity[S]. 2007. (in Chinese))
|
[29] |
环发[2004] 75号危险废物安全填埋处置工程建设技术要求[S]. 2004.
(Huanfa [2004] No. 75 technical requirements for safe landfill disposal construction of hazardous wasteuanfa [2004] No. 75 technical requirements for safe landfill disposal construction of hazardous waste[S]. 2004. (in Chinese)) |
1. |
魏永杰,陈伟利. 纤维增强水泥土搅拌桩芯样的强度特征与本构模型. 水电能源科学. 2024(04): 103-106 .
![]() | |
2. |
朱彬,裴华富,杨庆,卢萌盟,王涛. 基于随机有限元法的波致海床响应概率分析. 岩土力学. 2023(05): 1545-1556 .
![]() | |
3. |
周文辉,肖宁,占辉,贺佐跃. 广州南沙某桥头路基处理方案对比及其工后沉降分析. 科技和产业. 2022(03): 370-376 .
![]() | |
4. |
陈利宏,杜军,唐灵敏,熊勃,姚嘉敏. 不同养护龄期下水泥掺入比对水泥土直剪特性的影响. 广东土木与建筑. 2022(05): 35-39 .
![]() | |
5. |
于晓夫. 公路施工质量控制与软土地基处理技术. 工程技术研究. 2022(10): 158-160 .
![]() | |
6. |
王涛,马骏,周国庆,许大晴,季雨坤. 冻土地层三维空间变异性表征及冻结帷幕温度特征值演化过程研究. 岩石力学与工程学报. 2022(10): 2094-2108 .
![]() | |
7. |
黄毫春,昌郑,吴春鹏,姚嘉敏,熊勃,刘飞禹. 纤维长度与掺量对加筋水泥土直剪特性的影响研究. 施工技术(中英文). 2022(21): 54-59 .
![]() | |
8. |
马冬冬,马芹永,黄坤,张蓉蓉. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究. 岩土工程学报. 2021(03): 572-578 .
![]() | |
9. |
郑永胜,田盎然,尹鹏,范韬,刘浩宇,居俊,唐强. 复杂环境下超宽深大基坑设计与施工技术分析——以X352县道改扩建工程项目为例. 盐城工学院学报(自然科学版). 2021(01): 60-65 .
![]() | |
10. |
周禹暄,胡俊,林小淇,李珂,王志鑫. X型与圆形冻结管单管冻结温度场数值对比分析. 海南大学学报(自然科学版). 2021(02): 198-203 .
![]() | |
11. |
张新建,唐昌意,刘智. 淤泥水泥土室内配合比试验及成桩效果分析. 公路. 2021(06): 81-84 .
![]() | |
12. |
秦堃. 深厚软土地基联合加固技术模型试验研究. 粉煤灰综合利用. 2021(04): 35-39 .
![]() | |
13. |
张卫中,闫少峰,黄学军,何进江,康钦容. 有机粉质粘土灌注桩孔壁垮塌机理及控制研究. 武汉理工大学学报. 2021(05): 80-84+91 .
![]() | |
14. |
刘海桃,徐志豪,邵朝阳. 有机质对水泥改良红黏土的力学特性影响及微观机理分析. 土工基础. 2021(05): 645-648 .
![]() | |
15. |
周文辉,肖宁,贺佐跃. 广州南沙某路基桩帽下脱空机理分析. 河南科学. 2021(11): 1783-1789 .
![]() | |
16. |
马子鹏. 临江富水环境大型过江通道基坑降水施工关键技术研究. 居舍. 2020(29): 63-66+72 .
![]() | |
17. |
吴雨薇,胡俊,王志鑫,曾东灵,汪树成. 水下清淤人工冻结板温度场数值分析. 煤田地质与勘探. 2019(02): 168-176 .
![]() | |
18. |
黄磊,刘文博,吴雨薇,陈璐,胡俊. 南宁地铁东滨区间联络通道冻结法加固施工监测分析研究. 森林工程. 2019(06): 77-85 .
![]() | |
19. |
吴雨薇,刘文博,胡俊,王志鑫,曾东灵. 基于温度场分析的新型水下清淤装置数值研究. 水利水电技术. 2019(11): 103-109 .
![]() | |
20. |
胡俊,张皖湘,汪磊,刘文博,王志鑫. 防护网与液氮冻土墙复合基坑支护技术研究. 海南大学学报(自然科学版). 2019(04): 359-367 .
![]() | |
21. |
郑俊杰,乔雅晴,章荣军. 被动加固区参数变异性对软土深基坑变形行为的影响. 土木与环境工程学报(中英文). 2019(06): 1-8 .
![]() |