• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
Citation: XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012

Mechanism of cemented soil modified by aliphatic ionic soil stabilizer

More Information
  • Received Date: October 23, 2018
  • Published Date: September 24, 2019
  • The relatively low early strength and significant cracks are the common issues for the cementitious materials-stabilized soil (cemented soil). To remedy its defects, novel ionic soil stabilizers (ISS) with dosages from 1/300 to 1/50 of water content volume of the cemented soil are applied. Through the tests on unconfined compressive strength and volume chemical shrinkage, the modification feasibility of ISS application is verified. Through the characterization and analyses of the surface adsorption behaviors, phase evolution and micro-structure, the modification mechanisms of ISS on cemented soil are systematically studied. The results indicate that the ISS molecules adsorb on the compositions of cemented soil selectively. After the ISS addition, the system dispersion is enhanced, the water combination capacity of soil minerals is reduced, thus accelerating the formation of hydration products, benefiting the pore distribution and increasing the volume chemical shrinkage. The optimum dosage of this study is 1/150, and the excessive addition will retard the modification effects but reduce the chemical shrinkage. The results can be used as a reference for the modification of cemented soil with ISS.
  • [1]
    HORPIBULSUK S, RACHAN R, CHINKULKIJNIWAT A, et al.Analysis of strength development in cement-stabilized silty clay from microstructural considerations[J]. Construction & Building Materials, 2010, 24(10): 2011-2021.
    [2]
    SONG D, CHEN B.Extended energy accounting for energy consumption and co2, emissions of cement industry—a basic framework[J]. Energy Procedia, 2016, 88: 305-308.
    [3]
    易耀林, 李晨, 孙川, 等. 碱激发矿粉固化连云港软土试验研究[J]. 岩石力学与工程学报, 2013, 32(9): 1820-1826.
    (YI Yao-lin, LI Chen, SUN Chuan, et al.Test on alkali-activated ground granulated blast-furnace slag (GGBS) for Lianyungang soft soil stabilization[J]. Chinese Journal of Rock Mechanics & Engineering, 2013, 32(9): 1820-1826. (in Chinese))
    [4]
    JAFER H, ATHERTON W, SADIQUE M, et al.Stabilisation of soft soil using binary blending of high calcium fly ash and palm oil fuel ash[J]. Applied Clay Science, 2017, 152: 323-332.
    [5]
    GÖKTEPE A B, SEZER A, SEZER G İ, et al. Classification of time-dependent unconfined strength of fly ash treated clay[J]. Construction & Building Materials, 2008, 22(4): 675-683.
    [6]
    PHETCHUAY C, HORPIBULSUK S, SUKSIRIPATTANAPONG C, et al.Calcium carbide residue: alkaline activator for clay-fly ash geopolymer[J]. Construction & Building Materials, 2014(69): 285-294.
    [7]
    任葳葳. 高分子材料改性淤泥质土及其机理研究[D]. 重庆:重庆大学, 2015.
    (REN Wei-wei.Study on modification and mechanism of silt solidified by polymer material[D]. Chongqing: Chongqing University, 2015. (in Chinese))
    [8]
    刘清秉, 项伟, 崔德山. 离子土固化剂对膨胀土结合水影响机制研究[J]. 岩土工程学报, 2012, 34(10): 1887-1895.
    (LIU Qing-bing, XIANG Wei, CUI De-shan.Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895. (in Chinese))
    [9]
    崔德山, 项伟, 曹李靖, 等. ISS减小红色黏土结合水膜的试验研究[J]. 岩土工程学报, 2010, 32(6): 944-949.
    (CUI De-shan, XIANG Wei, CAO Li-jing, et al.Experimental study on reducing thickness of adsorbed water layer for red clay particles treated by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 944-949. (in Chinese))
    [10]
    刘清秉, 项伟, 张伟锋, 等. 离子土壤固化剂改性膨胀土的试验研究[J]. 岩土力学, 2009, 30(8): 2286-2290.
    (LIU Qing-bing, XIANG Wei, ZHANG Wei-feng, et al.Experimental study of ionic soil stabilizer-improved expansive soil[J]. Rock & Soil Mechanics, 2009, 30(8): 2286-2290. (in Chinese))
    [11]
    SUN J, SHI H, QIAN B, et al.Effects of synthetic C-S-H/PCE nanocomposites on early cement hydration[J]. Construction and Building Materials, 2017, 140: 282-292.
    [12]
    唐胜程, 王伟山, 景希玮, 等. PCE结构对硅酸三钙结构和形貌的影响[J]. 建筑材料学报, 2016, 19(6): 1073-1076.
    (TANG Sheng-cheng, WANG Wei-shan, JING Xi-wei, et al.Effect of PCE structure on the structure and morphology of tricalcium silicate[J]. Journal of Building Materials, 2016, 19(6): 1073-1076. (in Chinese))
    [13]
    THOMAS J J, GHAZIZADEH S, MASOERO E.Kinetic mechanisms and activation energies for hydration of standard and highly reactive forms of β -dicalcium silicate (C2S)[J]. Cement & Concrete Research, 2017, 100: 322-328.
    [14]
    FERNÁNDEZ-JIMÉNEZ A, PALOMO A. Mid-infrared spectroscopic studies of alkali-activated fly ash structure[J]. Microporous & Mesoporous Materials, 2005, 86(1): 207-214.
    [15]
    翁诗甫. 傅里叶变换红外光谱分析[M]. 北京: 化学工业出版社, 2010.
    (WENG Shi-fu.Analysis of fourier transform infrared spectroscopy[M]. Beijing: Chemical Industry Press, 2010. (in Chinese))
    [16]
    XU F, WEI H, QIAN W, et al.Composite alkaline activator on cemented soil: multiple tests and mechanism analyses[J]. Construction and Building Materials, 2018, 188: 433-443.
    [17]
    JIANG Y, ZHANG S, LIU X.Early calcium monocar- boaluminate hydrate formation in cement paste: effect of polycarboxylate type admixture[J]. Journal of Southeast University (English Edition), 2010, 26: 574-577.
    [18]
    PRINCE W, EDWARDS M.Interaction between ettringite and a polynaphthalene sulfonate superplasticizer in a cementitious paste[J]. Cement & Concrete Research, 2002, 32(1): 79-85.
    [19]
    RAMACHANDRAN V S, PAROLI R, BEAUDOIN J, et al.Handbook of thermal analysis of construction materials[M]. New York: William Andrew Publishing, 2002.
    [20]
    VITALE E, DENEELE D, PARIS M, et al.Multi-scale analysis and time evolution of pozzolanic activity of lime treated clays[J]. Applied Clay Science, 2017, 141: 36-45.
    [21]
    ZENG Q, LI K, et al.Determination of cement hydration and pozzolanic reaction extents for fly-ash cement pastes[J]. Construction & Building Materials, 2012, 27(1): 560-569.
    [22]
    METHA P K, MONTERO P J.Concrete: microstructure, properties and materials[M]. London: McGraw-Hill, 2006.
    [23]
    TAN H, GU B, MA B, et al.Mechanism of intercalation of polycarboxylate superplasticizer into montmorillonite[J]. Applied Clay Science, 2016, 129: 40-46.
    [24]
    AITAKBOUR R, BOUSTINGORRY P, LEROUX F, et al.Adsorption of poly carboxylate poly (ethylene glycol) (PCP) esters on montmorillonite (Mmt): effect of exchangeable cations (Na+, Mg2+ and Ca2+) and PCP molecular structure[J]. Journal of Colloid & Interface Science, 2015, 437: 227-234.
  • Related Articles

    [1]JIAN Tao, KONG Ling-wei, BAI Wei, WANG Jun-tao, LIU Bing-heng. Experimental study on effects of water content on small-strain shear modulus of undisturbed loess[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 160-165. DOI: 10.11779/CJGE2022S1029
    [2]LIU Bing-heng, KONG Ling-wei, SHU Rong-jun, LI Tian-guo, JIAN Tao. Characteristics of small-strain shear modulus of Zhanjiang clay under influence of inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 19-22. DOI: 10.11779/CJGE2021S2005
    [3]HOU Tian-shun, CUI Yi-xiang. Dynamic deformation characteristics and modified Hardin-Drnevich model for light weight soil mixed with EPS particles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1602-1611. DOI: 10.11779/CJGE202109004
    [4]XIE Jun, BAO Shu-xian, HU Ying-fei, NI Ya-jing, LI Yan-tao. Design and experimental research on model soils used for shaking table tests of superstructure-soil-tunnel interaction system[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 476-485. DOI: 10.11779/CJGE202003009
    [5]CHENG Ke, MIAO Yu. Effects of loess content on dynamic shear modulus and damping ratio of Taiyuan sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 69-72. DOI: 10.11779/CJGE2019S2018
    [6]LIU Xin, LI Sa, LIU Xiao-long, CHEN Wen-wei. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1773-1780. DOI: 10.11779/CJGE201909024
    [7]BAI Li-dong, XIANG Wei, SAVIDIS A Stavros RACKWITZ Frank, SAVIDIS A Stavros RACKWITZ Frank. Resonant column and bender element tests on maximum shear modulus of dry sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 184-188.
    [8]CHI Shichun, GUO Xiaoxia, YANG Jun, LIN Gao. Small strain characteristics and threshold strain of dynamic Hardin-Drnevich model for soils[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 243-249.
    [9]YUAN Xiaoming, SUN Jing. Model of maximum dynamic shear modulus of sand under anisotropic consolidation and revision of Hardin’s formula[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(3): 264-269.
    [10]Shi Zhaoji, Feng Wanling, Zhang Zhanji. The Measurement of Dynamic Young's Modulus by Resonant Column Method[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(6): 25-32.
  • Cited by

    Periodical cited type(18)

    1. 倪小东,张宇科,陆江发,崔允亮. 地层局部沉陷诱发有压管道渗透侵蚀机制研究. 华中科技大学学报(自然科学版). 2025(02): 17-24 .
    2. 王晓璞,赵海龙,任玲玲,高岩岩,薛东兴,山河,王斌,姚传进,赵建,白英睿. 结合人工智能图像识别的微塑料运移与滞留微观可视化实验方法. 实验技术与管理. 2025(04): 14-19 .
    3. 梁越,冉裕星,许彬,张鑫强,何慧汝. 细颗粒含量影响渗流侵蚀规律的细观机理研究. 岩土工程学报. 2025(05): 1099-1106 . 本站查看
    4. 施静怡,吴能森,刘强. 静压桩在成层地基中挤土效应的可视化研究. 河南城建学院学报. 2024(02): 20-26 .
    5. 刘江涛,李存军,于江华,张彦红,张春彬,孔纲强. 施工顺序对微型钢管桩加固既有基础变形的影响试验研究. 土木与环境工程学报(中英文). 2024(04): 100-108 .
    6. 梁越,何慧汝,许彬,张鑫强,冉裕星. 基于透明土的水力梯度对渗流侵蚀影响试验研究. 河海大学学报(自然科学版). 2024(05): 60-66 .
    7. 徐春瑞,郭畅,黄博. 孔隙率对砂土渗透稳定性影响的内部可视化研究. 地基处理. 2024(05): 451-462 .
    8. 王宇,陈从建,钱声源,段祥宝,谷艳昌. 可视化渗透破坏实验装置研发及土力学实践探索. 力学与实践. 2023(01): 193-199 .
    9. 周峙,罗易,张家铭,孙狂飙. 考虑裂隙面积率的裂隙性黏土优势流双域入渗规律研究. 安全与环境工程. 2023(02): 109-118 .
    10. 李敏,齐振霄,姚昕妤,赵博华,李琦. 基于可视角度下重金属污染物在介质中的迁移规律. 环境工程学报. 2023(04): 1303-1312 .
    11. 马朝阳,任杰,南胜豪,徐松. 土石堤坝渗漏病险试验装置的研制及初步应用. 岩土工程学报. 2023(11): 2268-2277 . 本站查看
    12. 侯娟,滕宇阳,李昊,刘磊. 多孔介质曲折度对膨润土衬垫渗透性能的影响. 湖南大学学报(自然科学版). 2022(01): 155-164 .
    13. 梁越,代磊,魏琦. 基于透明土和粒子示踪技术的渗流侵蚀试验研究. 岩土工程学报. 2022(06): 1133-1140 . 本站查看
    14. 顾展飞,田光辉,王栩硕,于文搏. 地下管线渗漏对粉土地面塌陷过程的影响及实验研究. 科技创新与应用. 2022(25): 61-64 .
    15. 杜建明,房倩,刘翔,海路. 透明土物理模拟试验技术现状与趋势. 科学技术与工程. 2021(03): 852-861 .
    16. 谷敬云,罗玉龙,张兴杰,詹美礼,王媛,盛金昌. 基于平面激光诱导荧光的潜蚀可视化试验装置及其初步应用. 岩石力学与工程学报. 2021(06): 1287-1296 .
    17. 冷先伦,王川,庞荣,盛谦. 透明胶结土材料强度特性的试验研究. 岩土力学. 2021(08): 2059-2068+2077 .
    18. 赵宽耀,许强,刘方洲,张先林. 黄土中优势通道渗流特征研究. 岩土工程学报. 2020(05): 941-950 . 本站查看

    Other cited types(11)

Catalog

    Article views (297) PDF downloads (218) Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return