• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Hong-yan. Initiation mechanism of cracks of rock in compression and shear considering T-stress[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1296-1302. DOI: 10.11779/CJGE201907014
Citation: LIU Hong-yan. Initiation mechanism of cracks of rock in compression and shear considering T-stress[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1296-1302. DOI: 10.11779/CJGE201907014

Initiation mechanism of cracks of rock in compression and shear considering T-stress

More Information
  • Received Date: May 01, 2018
  • Published Date: July 24, 2019
  • In the studies on the initiation mechanism of cracks of rock in compression and shear, the traditional fracture theory only considers the singular stress (r1/2 term) of the elastic stress state near a crack tip in the Williams’ series expression, and ignores the effects of the non-singular term (T-stress). It leads to the disagreement between the theoretical predictions and the experimental results. On the basis of analyzing the mechanical behaviors of cracks in compression and shear, the T-stress is introduced into the maximum tangential stress (MTS) criterion of the traditional fracture mechanics, and accordingly the revised MTS criterion is proposed by considering T-stress. Meanwhile, by considering the stress transfer of the cracks in compression and shear, the deformation parameters of cracks, e.g., the crack normal and shear stiffness, are also introduced into the original MTS criterion. Finally, the new MTS criterion is set up to simultaneously consider the properties of rock, the geometrical parameters of cracks (such as dip angle and length), the strength parameters (such as frictional coefficient of crack face), and the deformation parameters (such as crack normal and shear stiffness). Therefore, it can perfectly reflect the initiation mechanism of the cracks of rock in compression and shear. The example indicates that the initiation angle of wing crack obtained from the proposed method agrees well with that obtained from the tests, and it is also found through the sensitivity analysis for the parameters that the relative critical size at the crack tip has the most important influences on the initiation angle of wing crack.
  • [1]
    WILLIAMS J G, EWING P D.Fracture in complex stress: the angled crack problem[J]. International Journal of Fracture, 1972, 8(4): 416-441.
    [2]
    GUPTA M, ALDERLIESTEN R C, BENEDICTUS R.A review of T-stress and its effects in fracture mechanics[J]. Engineering Fracture Mechanics, 2015, 134: 218-241.
    [3]
    唐世斌, 黄润秋, 唐春安. T应力对岩石裂纹扩展路径及起裂强度的影响研究[J]. 岩土力学, 2016, 37(6): 1521-1529,1549.
    (TANG Shi-bin, HUANG Run-qiu, TANG Chun-an.Effect of T-stress on crack growth path in rock and fracture strength[J]. Rock and Soil Mechanics, 2016, 37(6): 1521-1529,1549. (in Chinese))
    [4]
    WILLIAMS M L, CALIF P.On the stress distribution at the base of a stationary crack[J]. Journal of Applied Mechanics, 1957, 24(1): 109-114.
    [5]
    CHRISTOPHER C J, JAMES M N, PATTERSON E A, et al.A quantitative evaluation of fatigue crack shielding forces using photoelasticity[J]. Engineering Fracture Mechanics, 2008, 75(14): 4190-4199.
    [6]
    COLOMBO C, DU Y, JAMES M N, et al.On crack tip shielding due to plasticity-induced closure during an overload[J]. Fatigue Fracture Engineering Material Structure, 2010, 33(12): 766-777.
    [7]
    MATVIENKO Y G.Maximum average tangential stress criterion for prediction of the crack path[J]. International Journal of Fracture, 2012, 176(1): 113-118.
    [8]
    SIMTH D J, AYATOLLAHI M R, PAVIER M J.The role of T-stress in brittle fracture for linear elastic materials in mixed-mode loading[J]. Fatigue Fracture Engineering Material Structure, 2001, 24(2): 137-150.
    [9]
    LI X F, LIU G L, LEE K Y.Effects of T-stresses on fracture initiation for a closed crack in compression with frictional crack faces[J]. International Journal of Fracture, 2009, 160(1): 19-30.
    [10]
    赵彦琳, 范勇, 朱哲明, 等. T应力对闭合裂纹断裂行为的理论和实验研究[J]. 岩石力学与工程学报, 2018, 37(6): 1340-1349.
    (ZHAO Yan-lin, FAN Yong, ZHU Zhe-ming, et al.Analytical and experimental study on the effect of T-stress on behavior of closed cracks[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1340-1349. (in Chinese))
    [11]
    FINNIE I, SAITH A.A note on the angled crack problem and the directional stability of cracks[J]. International Journal of Fracture, 1973, 9(4): 484-486.
    [12]
    SMITH D J, AYATOLLAHI M R, PAVIER M J.The role of T-stress in brittle fracture for linear elastic materials in mixed-mode loading[J]. Fatigue and Fracture of Engineering Materials and Structures, 2001, 24: 137-150.
    [13]
    RASHIDI M M, AYATOLLAHI1 M R, BERTO F. Rock fracture toughness in mode II loading: a theoretical model based on local strain energy density[J]. Rock Mechanics and Rock Engineering, 2018, 51: 243-253.
    [14]
    唐世斌, 黄润秋, 唐春安, 等. 考虑T应力的最大周向应变断裂准则研究[J]. 土木工程学报, 2016, 49(9): 87-95.
    (TANG Shi-bin, HUANG Run-qiu, TANG Chun-an, et al.Study on fracture criterion based on the maximum tangential strain considering the T-stress[J]. China Civil Engineering Journal, 2016, 49(9): 87-95. (in Chinese))
    [15]
    PRUDENCIO M, van SINT J M. Strength and failure modes of rock mass models with non-persistent joints[J]. International Journal of Rock mechanics & Mining Sciences, 2007, 46(6): 890-902.
    [16]
    李世愚, 和泰名, 尹祥础. 岩石断裂力学导论[M]. 合肥:中国科学技术大学出版社, 2010.
    (LI Shi-yu, HE Tai-ming, YIN Xiang-chu.Introduction of rock fracture mechanics[M]. Hefei: University of Science and Technology of China Press, 2010. (in Chinese))
    [17]
    LEE H, JEON S.An experimental and numerical study of fracture coalescence in pre-cracked specimens in uniaxial compression[J]. International Journal of Solids and Structures, 2011, 48: 979-999.
    [18]
    AYATOLLAHI M R, ALIHA M R M. On the use of Brazilian disc specimen for calculating mixed mode I-II fracture toughness of rock materials[J]. Engineering Fracture Mechanics, 2008, 75: 4631-4641.
    [19]
    LIU T Y, CAO P, LIN H.Damage and fracture evolution of hydraulic fracturing in compression-shear rock cracks[J]. Theoretical and Applied Fracture Mechanics, 2014, 74: 55-63.
    [20]
    WILLIAMS M L, CALIF P.On the stress distribution at the base of a stationary crack[J]. Journal of Applied Mechanics, 1957, 24(1): 109-114.
    [21]
    AYATOLLAHI M R, ALIHA M R M. On the use of Brazilian disc specimen for calculating mixed mode I - II fracture toughness of rock materials[J]. Engineering Fracture Mechanics, 2008, 75: 4631-4641.
    [22]
    BOBET A.The initiation of secondary cracks in compression[J]. Engineering Fracture Mechanics, 2000, 66: 187-219.
  • Cited by

    Periodical cited type(17)

    1. 张雄辉,黄孝福,黄诗渊,刘发贵,聂亮冰,黎子玄. 压剪条件下裂缝开闭对准脆性材料断裂行为的影响机制研究. 中国农村水利水电. 2025(03): 128-135 .
    2. 王磊,商瑞豪,刘怀谦,陈礼鹏,张宇,王安铖,张帅,刘化强. 荷载作用下多裂隙煤体力学特性与起裂角研究. 岩土力学. 2024(03): 659-673 .
    3. 徐海铎,李宏艳,梁冰,孙中学,何适,莫云龙. 压剪作用下单一闭合裂纹起裂扩展研究. 应用力学学报. 2024(03): 524-535 .
    4. 李修磊,刁航,陈臣,黄锋,凌天清,曾彬. 压缩荷载作用下岩石类材料裂缝扩展预测理论的改进及验证. 河南理工大学学报(自然科学版). 2024(05): 163-172 .
    5. 宋孝天,刘红岩. 裂隙性质对岩石压缩力学特性影响的扩展有限元研究. 矿业研究与开发. 2023(01): 76-85 .
    6. 刘钧玉,张天禹,苏艳,宁宝宽. 基于ABAQUS二次开发的巴西圆盘断裂机理. 沈阳工业大学学报. 2023(01): 106-112 .
    7. 王尔钧,马磊,曹峰,冯明,曾凡辉. 定向井压裂射孔方位优化及应用研究. 西南石油大学学报(自然科学版). 2023(01): 117-126 .
    8. 李尉,陈文化. 亚高温裂隙气–汽压作用下岩石近表Ⅰ–Ⅱ复合型裂纹起裂研究. 岩石力学与工程学报. 2023(S1): 3206-3218 .
    9. 刘建,乔兰,李庆文,赵国彦. 考虑T应力的Ⅰ/Ⅱ型裂纹最大切向应变能密度断裂准则及其验证. 中南大学学报(自然科学版). 2022(06): 2268-2278 .
    10. 李英杰,倪婷,左建平,刘德军,宋宜豪. 坚硬顶板定向水力压裂裂纹起裂机制及影响因素分析. 岩石力学与工程学报. 2022(10): 2015-2029 .
    11. 刘建,乔兰,李庆文,赵国彦. 考虑端部摩擦的中心直裂纹巴西圆盘断裂参数解析解. 工程科学学报. 2022(12): 2040-2047 .
    12. 高玮,崔爽,肖婷,陈新,周聪,胡承杰. 基于最小塑性区半径准则的岩石裂纹起裂规律. 煤炭学报. 2021(10): 3193-3202 .
    13. 华文,潘鑫,淦志强,董世明. 基于广义最大周向应变准则的断裂特性研究. 西南石油大学学报(自然科学版). 2021(06): 42-53 .
    14. 李文洲,司林坡,卢志国,伊康,武龙云. 煤单轴压缩起裂强度确定及其关键因素影响分析. 煤炭学报. 2021(S2): 670-680 .
    15. 马芹永,苏晴晴,马冬冬,袁璞. 含不同节理倾角深部巷道砂岩SHPB动态力学破坏特性试验研究. 岩石力学与工程学报. 2020(06): 1104-1116 .
    16. 靳松洋,刘辉. T应力分量对压剪闭合裂纹张拉起裂角的影响研究. 人民珠江. 2020(08): 68-74+97 .
    17. 王俊杰,黄诗渊,郭万里,赵天龙. 考虑裂缝几何特性和T应力的类岩石材料压剪张拉断裂准则. 岩土工程学报. 2020(09): 1622-1631 . 本站查看

    Other cited types(17)

Catalog

    Article views (240) PDF downloads (181) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return