• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
GAO Jun, DANG Fa-ning, YANG Chao, REN Jie. Simplified mechanical analysis method for tensile characteristics of high asphalt concrete core[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1279-1287. DOI: 10.11779/CJGE201907012
Citation: GAO Jun, DANG Fa-ning, YANG Chao, REN Jie. Simplified mechanical analysis method for tensile characteristics of high asphalt concrete core[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1279-1287. DOI: 10.11779/CJGE201907012

Simplified mechanical analysis method for tensile characteristics of high asphalt concrete core

More Information
  • Received Date: August 14, 2018
  • Published Date: July 24, 2019
  • At present, there is no simplified method to study the mechanical and deformation characteristics of asphalt concrete core. Aiming at the serious tensile phenomenon of high asphalt concrete core, the mechanism of the core producing tensile stress is analyzed. The concept of reducing the tensile stress of the core is proposed. The rockfill dam with straight core is designed to be the rockfill dam with curved core combining with the special transmission mechanism of the arch structure. Based on the theory of Winkler elastic foundation straight beam and curved beam, the simplified mechanical analysis model for the straight core and curved core is established. The influences of the dam height and rockfill modulus on the deflection and tensile stress (bending moment) of the straight core are investigated. The effect of the curved core to reduce tensile stress is also investigated. The results show that the simplified mechanical analysis model can reflect the force and deformation characteristics of the core. And there exists large tensile stress at the end of the straight core. The higher the dam height and the smaller the rockfill modulus, the greater the tensile stress at the end of the core and the greater the risk of the core-producing tensile failure. The curved core shortens the axis with the help of deflection and transforms the lateral load into axial compression load to reduce the bending moment and increases the axial force to reduce the tensile stress at its end. Compared with the straight core, the curved core can reduce the tensile stress about 42.5% at its end, which can greatly improve the mechanical characteristics and increase the security of the core.
  • [1]
    WANG W B, HOEG K. the asphalt core embankment dam: a very competitive alternative[C]// Modern Rockfill Dams-2009. Beijing, 2009.
    [2]
    ICOLD. Bituminous cores for fill dams[C]// International Commission on Large Dams, Bulletin 84. Paris, 1992.
    [3]
    HÖEG K. Asphaltic concrete cores for embankment dams[R]. Oslo: Norwegian Geotechnical Institute of Technology, Norway, 1993.
    [4]
    WANG W B.Research on the suitability of asphalt concrete as water barrier in dams and dikes[D]. Oslo: University of Oslo, 2008.
    [5]
    李守义, 马成成, 李炎隆, 等. 沥青混凝土心墙堆石坝的地震反应特性分析[J]. 水力发电学报, 2013, 32(6): 198-202.
    (LI Shou-yi, MA Cheng-cheng, LI Yan-long, et al.Seismic response analysis of rockfill dam with asphaltic concrete core wall[J]. Journal of Hydroelectric Engineering, 2013, 32(6): 198-202. (in Chinese))
    [6]
    杨超, 党发宁, 薛海斌, 等. 河谷形状对沥青混凝土心墙坝变形特性的影响[J]. 水利水运工程学报, 2016(4): 54-62.
    (YANG Chao, DANG Fa-ning, XUE Hai-bin, et al.Influences of valley topography on deformation properties of asphalt concrete core wall dam[J]. Hydro-Science and Engineering, 2016(4): 54-62. (in Chinese))
    [7]
    吴海林, 彭云枫, 杜晓帆, 等. 沥青混凝土心墙坝应力变形及水力劈裂研究[J]. 水力发电学报, 2015, 34(4): 119-127.
    (WU Hai-lin, PENG Yun-feng, DU Xiao-fan, et al.Study on stress-deformation and hydraulic fracturing of rockfill dam with asphalt concrete core[J]. Journal of Hydroelectric Engineering, 2015, 34(4): 119-127. (in Chinese))
    [8]
    NG A K L, SMALL J C. A case study of hydraulic fracturing using finite element methods[J]. Canadaian Geotechnical Journal, 1999, 36(5): 861-875.
    [9]
    王为标, 张应波, 朱悦, 等. 沥青混凝土心墙石渣坝的有限元计算分析[J]. 水力发电学报, 2010, 29(4): 173-178.
    (WANG Wei-biao, ZHANG Ying-bo, ZHU Yue.Finite element analysis of asphalt concrete core rock-debris dam[J]. Journal of Hydroelectric Engineering, 2010, 29(4): 173-178. (in Chinese))
    [10]
    陈惠远, 施群, 唐仁杰. 沥青混凝土心墙土石坝的应力-应变分析[J]. 岩土工程学报, 1982, 4(4): 146-158.
    (CHEN Hui-yuan, SHI Qun, TANG Ren-jie.Stress-strain analysis of earth-rock dams with asphalt concrete core[J]. Chinese Journal of Geotechnical Engineering, 1982, 4(4): 146-158. (in Chinese))
    [11]
    荣冠, 朱焕春. 茅坪溪土石坝沥青混凝土心墙施工期变形分析[J]. 水利学报, 2003(7): 115-119.
    (RONG Guan, ZHU Huan-chun.Deformation of asphalt concrete core wall of Maopingxi earth-rock dam in the stage of construction[J]. Journal of Hydraulic Engineering, 2003(7): 115-119. (in Chinese))
    [12]
    汪明元, 周欣华, 包承纲, 等. 三峡茅坪溪高沥青混凝土心墙堆石坝运行状态研究[J]. 岩石力学与工程学报, 2007, 26(7): 1470-1477.
    (WANG Ming-yuan, ZHOU Xin-hua, BAO Cheng-gang, et al.Study on behaviors of Maopingxi high rockfill dam with asphalt concrete core of Three Gorges Project[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(7): 1470-1477. (in Chinese))
    [13]
    孔宪京, 许诏君, 邹德高, 等. 沥青混凝土心墙坝心墙与基座模型抗震试验研究[J]. 大连理工大学学报, 2013, 53(4): 559-564.
    (KONG Xian-jing, XU Zhao-jun, ZOU De-gao, et al.Seismic test study of core wall and base model of asphalt concrete core wall dam[J]. Journal of Dalian university of Technology, 2013, 53(4): 559-564. (in Chinese))
    [14]
    郦能惠, 杨泽艳. 中国混凝土面板堆石坝的技术进步[J].岩土工程学报, 2012, 34(8): 1361-1368.
    (LI Neng-hui, YANG Ze-yan.Technical advances in concrete face rockfill dams in China[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8):1361-1368. (in Chinese))
    [15]
    李国英, 王禄仕, 米占宽. 土质心墙堆石坝应力和变形研究[J]. 岩土工程学报, 2012, 23(8): 1363-1369.
    (LI Guo-ying, WANG Lu-shi, MI Zhan-kuan.Research onstress-strain behavior of soil core rockfill dam[J]. Chinese Journal of Geotechnical Engineering, 2004, 23(8): 1363-1369. (in Chinese))
    [16]
    郭彦林, 窦超. 我国拱形钢结构设计理论研究现状与展[J]. 建筑结构学报, 2012, 33(7): 1-17, 26.
    (GUO Yan-lin, DOU Chao.Research status and expectation of design theory of steel arch structure in China[J]. Journal of Building Structures, 2012, 33(7): 1-17, 26. (in Chinese))
    [17]
    文竞舟, 张永兴, 王成, 等. 钢拱架应力反分析隧道初期支护力学性能的研究[J]. 土木工程学报, 2012, 45(2): 170-175.
    (WEN Jing-zhou, ZHANG Yong-xing, WANG Cheng, et al.Back analysis for the mechanical properties of initial tunnel support based on steel arch stresses[J]. China Civil Engineering Journal, 2012, 45(2): 170-175. (in Chinese))
    [18]
    蔡晓鸿, 蔡勇平. 水工压力隧洞结构应力计算[M]. 北京:中国水利水电出版社, 2004.
    (CAI Xiao-hong, CAI Yong-ping.Structural stress calculation for hydraulic pressure tunnel[M]. Beijing: China Water Power Press, 2004. (in Chinese))
    [19]
    杨高中. 对“弹性地基上圆拱的计算”的讨论[J]. 土木工程学报, 1964, 10(5): 75-88.
    (YANG Gao-zhong.Discussion on “Computation of circular arch on elastic foundation”[J]. China Civil Engineering Journal, 1964, 10(5): 75-88. (in Chinese))
    [20]
    杨蓓. 水轮机钢蜗壳及引水钢管垫层施工法受力解析[D]. 西安: 西安理工大学, 2012.
    (YANG Bei.The stress analysis of the cushion construction method of turbine spiral case and intake steel pipes[D]. Xi'an: Xi'an University of Technology, 2012. (in Chinese))
    [21]
    TERZAGHI K.Evaluation of coefficients of subgrade reaction[J]. Géotechnique, 1955, 5(4): 297-326.
  • Related Articles

    [1]LIU Bing-heng, KONG Ling-wei, SHU Rong-jun, LI Tian-guo, JIAN Tao. Characteristics of small-strain shear modulus of Zhanjiang clay under influence of inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 19-22. DOI: 10.11779/CJGE2021S2005
    [2]SHENG Dai-chao, YANG Chao. Discussion of fundamental principles in unsaturated soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 438-470.
    [3]HUANG Mao-song, LIU Yan-hua. Simulation of yield characteristics and principal stress rotation effects of natural soft clay[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1667-1675.
    [4]Establishing soil constitutive model based on coupling stress[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1922-1929.
    [5]XIAO Yang, DENG An. Stress-strain analyses of sand-EPS lightweight-bead fills based on elliptic-parabolic yield surfaces model[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1467-1471.
    [6]DAI Zihang, ZHOU Ruizhong, LU Caijin. Discussions on yield criterions and stress paths of soils in tests and numerical analyses[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 968-976.
    [7]CAO Yuchun, CHEN Yunmin, HUANG Maosong. One-dimensional nonlinear consolidation analysis of structured natural soft clay subjected to arbitrarily time-dependent construction loading[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 569-574.
    [8]JIANG Yongdong, XIAN Xuefu, XIONG Deguo, ZHOU Fuchun. Study on creep behaviour of sandstone and its mechanical models[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1478-1481.
    [9]JIANG Zhenquan, JI Liangjun. The laboratory study on behavior of permeability of rock along the complete stress-strain path[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 153-156.
    [10]Shen Zhu-jiang. The Rational Form of Stress-Strain Relationship of Soils Based on Elasto-Plasticity Theory[J]. Chinese Journal of Geotechnical Engineering, 1980, 2(2): 11-19.
  • Cited by

    Periodical cited type(27)

    1. 李明昊,李皋,张毅,杨旭,李红涛,冯佳歆,宿腾跃. 位移约束和温度耦合下致密砂岩热诱导微裂纹发育规律研究. 岩石力学与工程学报. 2025(01): 174-184 .
    2. 黄彦华,张坤博,杨圣奇,田文岭,朱振南,印昊,李明旭. 高温后花岗岩微观特征及其对强度影响规律研究. 岩石力学与工程学报. 2025(02): 359-372 .
    3. Wendong Yang,Xiang Zhang,Bingqi Wang,Jun Yao,Pathegama G.Ranjith. Experimental study on the physical and mechanical properties of carbonatite rocks under high confining pressure after thermal treatment. Deep Underground Science and Engineering. 2025(01): 105-118 .
    4. 解经宇,宋继伟,隋建才,赵萌,王韧,曾翀,王建龙. 我国干热花岗岩在不同冷却条件下的力学响应研究进展. 煤田地质与勘探. 2025(03): 126-142 .
    5. 李明耀,李绍金,彭磊,丁宇飞,左建平. 基于相场法的花岗岩弹塑性损伤模型及其细观力学行为研究. 岩石力学与工程学报. 2024(03): 611-622 .
    6. 黄彦华,陶然,韩媛媛,陈笑,罗一鸣,武世岩. 温度对不同孔隙砂岩Ⅰ型断裂韧度影响的试验研究. 采矿与安全工程学报. 2024(02): 430-436 .
    7. 于洪丹,卢琛,陈卫忠,黄嘉玮,李洪辉. 塔木素黏土岩蠕变特性试验与理论研究. 岩石力学与工程学报. 2024(S1): 3578-3585 .
    8. 杨文东,王柄淇,姚军,井文君,张祥. 三轴压缩下实时高温和热处理后碳酸盐岩力学特性的试验研究. 岩石力学与工程学报. 2024(06): 1347-1358 .
    9. 闫程锦,郤保平. 基于颗粒流GBM模型的花岗岩热力损伤特性研究. 水利水电技术(中英文). 2024(05): 170-180 .
    10. 赵奎,李从明,曾鹏,熊良锋,龚囱,黄震. 持续高温作用下花岗岩特征应力及声发射特征试验研究. 岩石力学与工程学报. 2024(07): 1580-1592 .
    11. 贾蓬,钱一锦,毛松泽,徐雪桐,卢佳亮. 晶粒尺寸对花岗岩动态劈裂力学特性及断面粗糙度影响的试验研究. 应用基础与工程科学学报. 2024(05): 1449-1462 .
    12. 夏开宗,刘夏临,林英书,张飞,司志伟,孙朝燚. 基于岩体波速的地下洞室围岩损伤区岩体力学参数取值方法及工程应用. 岩石力学与工程学报. 2024(10): 2414-2429 .
    13. 黄麟淇,刘茂林,王钊炜,郭懿德,司雪峰,李夕兵,李超. 温度影响和真三轴加载下深部圆形隧洞破坏研究(英文). Journal of Central South University. 2024(09): 3119-3141 .
    14. 赵奎,李从明,曾鹏,熊良锋,龚囱,黄震. 热损伤花岗岩能量演化机制及损伤本构模型. 金属矿山. 2024(11): 45-54 .
    15. 黄彦华,陶然,陈笑,罗一鸣,韩媛媛. 高温后花岗岩断裂特性及热裂纹演化规律研究. 岩土工程学报. 2023(04): 739-747 . 本站查看
    16. 张涛,蔚立元,苏海健,高亚楠,贺虎,魏江波. 基于多级力链网络分析的花岗岩压缩特性的矿物尺寸效应研究. 岩石力学与工程学报. 2023(08): 1988-2003 .
    17. 李卫,苏海健,蔚立元,刘日成,陈广印. 高温热处理砂岩Ⅰ-Ⅲ混合断裂特性试验研究. 采矿与安全工程学报. 2023(06): 1281-1289 .
    18. 顾冬,马力,罗坤,孙云儒. 水利枢纽工程场地基岩高温三轴压缩渗透力学试验研究. 水利科技与经济. 2022(02): 74-78 .
    19. 张涛,蔚立元,鞠明和,李明,苏海健,季浩奇. 基于PFC3D-GBM的晶体–单元体尺寸比对花岗岩动态拉伸特性影响分析. 岩石力学与工程学报. 2022(03): 468-478 .
    20. 李博宇,彭文祥,王李昌,隆威. 温度与化学作用下岩石物理力学性质研究进展. 地质装备. 2022(02): 33-37 .
    21. 刘磊,李睿,秦浩,刘洋. 高温后深部矽卡岩动力学特性及微观破坏机制研究. 岩土工程学报. 2022(06): 1166-1174 . 本站查看
    22. 詹懿德,汪发祥,佘恬钰,沈佳轶,吕庆. 考虑围压效应的块状节理岩体变形破坏数值模拟. 水利水运工程学报. 2022(04): 70-76 .
    23. 李明耀,彭磊,左建平,王智敏,李绍金,薛喜仁. 基于DIP-FFT数值方法的花岗岩多尺度力学特性研究. 岩石力学与工程学报. 2022(11): 2254-2267 .
    24. 王春,熊宏威,舒荣华,薛文越,胡慢谷,张攀龙,雷彬彬. 高温处理后含铜矽卡岩的动态力学特性及损伤破碎特征. 中国有色金属学报. 2022(09): 2801-2818 .
    25. 梁忠豪,秦楠,孙嘉彬,葛强. 高温作用后黄砂岩三轴压缩及细观破裂机制. 科学技术与工程. 2021(24): 10430-10439 .
    26. 郝宪杰,刘继山,魏英楠,陈泽宇,靳多祥,潘光耀,张谦. 2000m超深煤系储层力学及声发射特征的围压效应. 中南大学学报(自然科学版). 2021(08): 2611-2621 .
    27. 徐文龙,徐鼎平,柳秀洋. 高温热损伤对花岗岩单轴破坏模式和强度的影响研究. 皖西学院学报. 2021(05): 94-99 .

    Other cited types(31)

Catalog

    Article views (218) PDF downloads (124) Cited by(58)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return