• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZENG Hao, TANG Chao-sheng, LIN Luan, XU Jin-jian, LIU Jun-dong, RONG De-zheng, WANG Dong-wei, SHI Bin. Interfacial friction dependence of propagation direction and evolution characteristics of soil desiccation cracks[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1172-1180. DOI: 10.11779/CJGE201906023
Citation: ZENG Hao, TANG Chao-sheng, LIN Luan, XU Jin-jian, LIU Jun-dong, RONG De-zheng, WANG Dong-wei, SHI Bin. Interfacial friction dependence of propagation direction and evolution characteristics of soil desiccation cracks[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1172-1180. DOI: 10.11779/CJGE201906023

Interfacial friction dependence of propagation direction and evolution characteristics of soil desiccation cracks

More Information
  • Received Date: April 24, 2018
  • Published Date: June 24, 2019
  • As the soils in nature are distributed in layers, the desiccation cracking process of the top soil is easily constrained by the contact conditions between the soil layers under drought conditions. A series of laboratory desiccation tests are therefore conducted to investigate the influences of interfacial frictional effect between soil layers on the developing direction and evolution characteristics of soil desiccation cracking. In the tests, three slurry samples with the initial saturation are prepared and dried under a constant room temperature of 30℃. Different interfacial friction conditions are designed at the bottom of the samples to simulate the frictional effect between soil layers in nature. During drying, photos of the surface and side of the samples at regular intervals are taken to record the development process of soil cracks from different angles. Some new discoveries show: (1) The soil desiccation cracks can develop from the surface downwards and may be firstly generated from the bottom of the soil and gradually develop upwards, which is different from the previous habitual understanding; (2) During the drying process, the initial development position and development degree of cracks are constrained by both the soil properties and the substrate friction conditions. For the soils with severe inhomogeneous or obvious flaws on the surface, the cracks are generated and develop from the surface flaws of soils, while for the relatively homogeneous soils, the cracks can be firstly generated from the bottom of the soil and gradually develop upwards under the influences of the substrate friction. Moreover, after the drying is completed, the development degree of the bottom cracks of the soils is even higher than that of the surface cracks. (3) The bottom cracks mostly propagate in inclined direction, and they are probably related to the developed shear stress. (4) During drying, the soil shrinks concentrically, and noticeable shrinkage nucleus at
  • [1]
    KODIKARA J, COSTA S.Desiccation cracking in clayey soils: mechanisms and modelling[M]// Multiphysical Testing of Soils and Shales. Berlin: Springer, 2013: 21-32.
    [2]
    HEWITT P J, PHILIP L K.Problems of clay desiccation in composite lining systems[J]. Engineering Geology, 1999, 53(2): 107-113.
    [3]
    RAYHANI M H, YANFUL E K, FAKHER A.Desiccation- induced cracking and its effect on the hydraulic conductive[J]. Canadian Geotechnical Journal, 2007, 44(3): 276-283.
    [4]
    NELSON J D, MILLER D J.Expansive soils: problems and practice in foundation and pavement engineering[M]. New York: John Wiley, 1992.
    [5]
    AYAD R, KONRAD J M, SOULIÉ M.Desiccation of a sensitive clay: application of the model CRACK[J]. International Zoo Yearbook, 1997, 34(34): 943-951.
    [6]
    LOZADA C, THOREL L, CAICEDO B.Effects of cracks and desiccation on the bearing capacity of soil deposits[J]. Géotechnique Letters, 2015, 5(3): 112-117.
    [7]
    BAKER R.Tensile strength, tension cracks, and stability of slopes[J]. Soils & Foundations, 1981, 21(2): 1-19.
    [8]
    陈守义. 考虑入渗和蒸发影响的土坡稳定性分析方法[J]. 岩土力学, 1997(2): 8-12.
    (CHEN Shou-yi.A method of stability analysis taken effects of infiltration and evaporation into consideration for soil slopes[J]. Rock and Soil Mechanics, 1997(2): 8-12. (in Chinese))
    [9]
    姚海林, 郑少河, 陈守义. 考虑裂隙及雨水入渗影响的膨胀土边坡稳定性分析[J]. 岩土工程学报, 2001, 23(5): 606-609.
    (YAO Hai-lin, ZHENG Shao-he, CHEN Shou-yi, et al.Analysis on the slope stability of expansive soils considering cracks and infiltration of rain[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 606-609. (in Chinese))
    [10]
    殷宗泽, 袁俊平, 韦杰, 等. 论裂隙对膨胀土边坡稳定的影响[J]. 岩土工程学报, 2012, 34(12): 2155-2161.
    (YIN Zong-ze, YUAN Jun-ping, WEI Jie, et al.Influences of fissures on slope stability of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2155-2161. (in Chinese))
    [11]
    TANG C S, CUI Y J, TANG A M, et al.Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils[J]. Engineering Geology, 2010, 114(3/4): 261-266.
    [12]
    TANG C, SHI B, LIU C, et al.Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils[J]. Engineering Geology, 2008, 101(3): 204-219.
    [13]
    唐朝生, 施斌, 刘春. 膨胀土收缩开裂特性研究[J]. 工程地质学报, 2012, 20(5): 663-673.
    (TANG Chao-sheng, SHI Bin, LIU Chun.Study on desiccation cracking behavior of expansive soil[J]. Journal of Engineering Geology, 2012, 20(5): 663-673. (in Chinese))
    [14]
    TOWNER G D.The mechanics of cracking of drying clay[J]. Journal of Agricultural Engineering Research, 1987, 36(2): 115-124.
    [15]
    MITCHELL J K, SOGA K.Fundamentals of soil behavior[J]. Soil Science Society of America Journal, 1976, 40(4): 827-866.
    [16]
    LAKSHMIKANTHAM R, PRATPERE C, LEDESMA- ALBERTO.Experimental evidence of size effect in soil cracking[J]. Canadian Geotechnical Journal, 2012, 49(3): 264-284.
    [17]
    袁权, 谢锦宇, 任柯. 边界约束对膨胀土干缩开裂的影响[J]. 工程地质学报, 2016, 24(4): 604-609.
    (YUAN Quan, XIE Jin-yu, REN Ke, et al.Effect of boundary constrains on desiccation crack of swelling soil[J]. Journal of Engineering Geology, 2016, 24(4): 604-609. (in Chinese))
    [18]
    易顺民, 黎志恒, 张延中. 膨胀土裂隙结构的分形特征及其意义[J]. 岩石工程学报, 1999, 21(3): 294-298.
    (YI Shun-min, LI Zhi-heng, ZHANG Yan-zhong.The fractal characteristics of fractures in expansion soil and its significance[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(3): 294-298. (in Chinese))
    [19]
    唐朝生, 施斌, 顾凯. 土中水分的蒸发过程试验研究[J]. 工程地质学报, 2011(6): 875-881.
    (TANG Chao-sheng, SHI Bin, GU Kai.Experimental investigation on evaporation process of water in soil during drying[J]. Journal of Engineering Geology, 2011(6): 875-881. (in Chinese))
    [20]
    TANG C S, CUI Y J, SHI B, et al.Desiccation and cracking behaviour of clay layer from slurry state under wetting-drying cycles[J]. Geoderma, 2011, 166(1): 111-118.
    [21]
    LIU C, TANG C S, SHI B, et al.Automatic quantification of crack patterns by image processing[J]. Computers & Geosciences, 2013, 57(4): 77-80.
    [22]
    KODIKARA J, BARBOUR S L, FREDLUND D G.An idealized framework for the analysis of cohesive soils undergoing desiccation[J]. Canadian Geotechnical Journal, 1997, 34(4): 477-488.
    [23]
    唐朝生, 施斌, 刘春. 影响黏性土表面干缩裂缝结构形态的因素及定量分析[J]. 水利学报, 2007, 38(10): 1186-1193.
    (TANG Chao-sheng, SHI Bin, LIU Chun.Factors affecting the surface cracking in clay due to drying shrinkage[J]. Journal of Hydraulic Engineering, 2007, 38(10): 1186-1193. (in Chinese))
    [24]
    唐朝生, 王德银, 施斌. 土体干缩裂隙网络定量分析[J]. 岩土工程学报, 2013, 33(12): 2298-2305.
    (TANG Chao-sheng, WANG De-yin, SHI Bin, et al.Quantitative analysis of soil desiccation crack network[J]. Chinese Journal of Geotechnical Engineering, 2013, 33(12): 2298-2305. (in Chinese))
    [25]
    MORRIS P H, GRAHAM J, WILLIAMS D J.Cracking in drying soils[J]. Canadian Geotechnical Journal, 1992, 29(2): 263-277.
    [26]
    FREDLUND D G, RAHARDJO H.Soil mechanics for unsaturated soils[M]. New York: John Wiley & Sons, 1993.
    [27]
    YESILLER N, MILLER C J, INCI G, et al.Desiccation and cracking behavior of three compacted landfill liner soils[J]. Engineering Geology, 2000, 57(1): 105-121.
    [28]
    AMARASIRI A L, COSTA S, KODIKARA J K.Determination of cohesive properties for mode I fracture from compacted clay beams[J]. Canadian Geotechnical Journal, 2011, 48(8): 1163-1173.
    [29]
    曾浩, 唐朝生, 刘昌黎, 等. 控制厚度条件下土体干缩开裂的界面摩擦效应[J]. 岩土工程学报, 2019, 41(3): 544-553.
    (ZENG Hao, TANG Chao-sheng, LIU Chang-li, et al.Effects of boundary friction and layer thickness on desiccation cracking behaviors of soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 544-553. (in Chinese))
    [30]
    HUECKEL T.On effective stress concepts and deformation in clays subjected to environmental loads: discussion[J]. Canadian Geotechnical Journal, 1992, 29(6): 1120-1125
    [31]
    刘昌黎, 唐朝生, 李昊达, 等. 界面粗糙度对土体龟裂影响的试验研究[J]. 工程地质学报, 2017, 25(5): 1314-1321.
    (LIU Chang-li, TANG Chao-sheng, LI Hao-da, et al.Experimental study on the effect of interfacial roughness on desiccation cracking behavior of soil[J]. Journal of Engineering Geology, 2017, 25(5): 1314-1321. (in Chinese))
    [32]
    SHORLIN K A, DE BRUYN J R, GRAHAM M, et al. Development and geometry of isotropic and directional shrinkage-crack patterns[J]. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1999, 61(6 Pt B): 6950.
    [33]
    GROISMAN A, KAPLAN E.An experimental study of cracking induced by desiccation[J]. Europhysics Letters, 2007, 25(6): 415.
    [34]
    PERON H, HUECKEL T, LALOUI L, et al.Fundamentals of desiccation cracking of fine-grained soils: experimental characterisation and mechanisms identification.[J]. Canadian Geotechnical Journal, 2009, 46(10): 1177-1201.
    [35]
    PERON H, LALOUI L, HU L, et al.Desiccation cracking of soils[J]. Chemosphere, 2009, 13(7/8): 869-888.
    [36]
    唐朝生, 施斌, 崔玉军. 土体干缩裂隙的形成发育过程及机理[J]. 岩土工程学报, 2018: 1415-1423.
    (TANG Chao-sheng, SHI Bin, CUI Yu-Jun.Behaviors and mechanisms of desiccation cracking of soils[J]. Chinese Journal of Geotechnical Engineering, 2018: 1415-1423. (in Chinese))
    [37]
    TOLLENAAR R N, PAASSEN L A V, JOMMI C. Observations on the desiccation and cracking of clay layers[J]. Engineering Geology, 2017, 230: 23-31.
    [38]
    LU N, LIKOS W J.Unsaturated soil mechanics[M]. J. Wiley, 2004.
    [39]
    TANG C S, SHI B, LIU C, et al.Experimental characterization of shrinkage and desiccation cracking in thin clay layer[J]. Applied Clay Science, 2011, 52(1): 69-77.
  • Cited by

    Periodical cited type(16)

    1. 陈威,王法鑫,蒙邹蕾,姚森,王翀霄,孙阳. 大直径盾构推进引起的桩基侧向位移分析. 甘肃科学学报. 2024(02): 95-101 .
    2. 丁智,张默爆,张霄,魏新江,申文明,周俊宏. 饱和土地区不同直径盾构穿越既有隧道的理论研究. 中南大学学报(自然科学版). 2024(04): 1447-1462 .
    3. 张志军,王永杰,陈海伦,贺晨,綦嘉诚,杨智,张连君. 盾构区间隧道下穿暗渠施工稳定性分析. 市政技术. 2024(07): 95-100+108 .
    4. 高子明. 盾构隧道穿越饱和砂土层的流固耦合分析. 低温建筑技术. 2024(11): 131-136 .
    5. 蔡晓明,潘泓,骆冠勇,曹洪. 大直径盾构施工引起的软土竖向变形计算研究. 河南理工大学学报(自然科学版). 2023(01): 185-193 .
    6. 白伟,宁茂权,关振长. 地形不对称条件下盾构隧道掘进施工的地表沉降特性. 福州大学学报(自然科学版). 2023(02): 205-212 .
    7. 房新胜,叶来宾,朱牧原,杜贵新. 清华园隧道大直径泥水盾构始发控制掘进分析. 铁道勘察. 2022(01): 81-86 .
    8. 杨召召,祝彦知,纠永志. 盾构隧道施工引起纵向地表沉降的黏弹性分析. 河南城建学院学报. 2022(04): 1-6+18 .
    9. 汤新辉,首正勇,刘建柯. 超大直径盾构施工引发的上软下硬地层地表沉降规律. 矿冶工程. 2022(05): 34-38+43 .
    10. 许梦飞,姜谙男,史洪涛,李德生,万友生,程利民. 下穿暗涵盾构隧道施工过程损伤-渗流耦合分析. 公路工程. 2022(05): 47-54+101 .
    11. 苏凤阳,朱建才,李东泰,董毓庆,丁智,陈乐华. 上软下硬地层大直径泥水盾构施工土体变形研究. 建筑结构. 2022(S2): 2675-2681 .
    12. 周洁. 大直径泥水盾构机滚动角纠偏技术. 安徽建筑. 2021(01): 164-166 .
    13. 邓皇适,傅鹤林,史越. 小转弯半径曲线盾构隧道开挖引发地表沉降计算. 岩土工程学报. 2021(01): 165-173 . 本站查看
    14. 丁智,何晨阳,董毓庆,吴勇,冯丛烈. 含气地层盾构施工引起的土体变形理论研究. 岩石力学与工程学报. 2021(11): 2330-2343 .
    15. 朱帆济. 大直径泥水盾构施工对粉质黏土地层变形的影响. 施工技术. 2020(09): 71-73 .
    16. 牟天光,祝江林. 不同施工条件下双线盾构隧道施工引发地表变形规律研究. 湖南文理学院学报(自然科学版). 2020(04): 75-79 .

    Other cited types(15)

Catalog

    Article views PDF downloads Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return