SUN Xiao-hao, MIAO Lin-chang, WU Lin-yu, WANG Cheng-cheng, CHEN Run-fa. Experimental study on precipitation rate of MICP under low temperatures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1133-1138. DOI: 10.11779/CJGE201906018
    Citation: SUN Xiao-hao, MIAO Lin-chang, WU Lin-yu, WANG Cheng-cheng, CHEN Run-fa. Experimental study on precipitation rate of MICP under low temperatures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1133-1138. DOI: 10.11779/CJGE201906018

    Experimental study on precipitation rate of MICP under low temperatures

    More Information
    • Received Date: August 02, 2018
    • Published Date: June 24, 2019
    • The low deposition rate of microbial solidification technology in low temperatures often restricts its application. Bacillus megaterium is chosen, and by controlling the different temperatures and pH values, the growth characteristics and urease activities of such strain are analyzed, and the calcium carbonate precipitation yields under different temperature conditions are studied. By adding urea to nutrient solution and the domestication in low temperatures, the low precipitation rate is improved. Finally, the sand solidification tests are conducted to comparatively study the curing effect with adding urea to medium or the domestication of Bacillus megaterium in low temperatures. The results show that the higher the temperature, the faster the growth and reproduction of Bacillus megaterium and the stronger the urease activity. Low temperatures obviously inhibit its growth and urease activity. When pH is 8, the growth and reproduction of bacillus are the fastest, and the urease activity is the strongest. The higher the temperature, the higher the deposition rate. Adding urea to nutrient solution and the domestication of Bacillus megaterium in low temperatures both can obviously increase the speed of reproduction and precipitation yield, which can effectively solve the problem of lacking calcium carbonate precipitation at low temperatures. By combining the two methods, the increase in sediment yields is more obvious. Adding urea to nutrient solution and the domestication of Bacillus megaterium in low temperatures both can improve the effect of soil solidification, and at the same time, using the two methods together, the curing effect promotion is more obvious. Therefore, the study can effectively solve the problem that less precipitation at low temperatures will obstacle actual engineering application, and lay a solid foundation for the subsequent application of MICP technology at low temperatures.
    • [1]
      WHIFFIN V S.Microbial CaCO3 precipitation for the production of biocement[D]. Perth: Murdoch University, 2004.
      [2]
      钱春香, 王安辉, 王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36(6): 1537-1548.
      (QIAN Cun-xiang, WANG An-hui, WANG Xin.Advances of soil improvement with bio-grouting[J]. Rock & Soil Mechanics, 2015, 36(6): 1537-1548. (in Chinese))
      [3]
      WHIFFIN V S, VAN Paassen L A, HARKES M P. Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology Journal, 2007, 24(5): 417-423.
      [4]
      DEJONG J T, MORTENSEN M B, MARTINEZ B C, et al.Biomediated soil improvement[J]. Ecological Engineering, 2010, 36(2): 197-210.
      [5]
      VAN PAASSEN L A, DAZA C M, STAAL M, et al. Potential soil reinforcement by biological denitrification[J]. Ecological Engineering, 2010, 36(2): 168-175.
      [6]
      WARTHMANN R, VAN LITH Y, VASCONCELOS C, et al.Bacterially induced dolomite precipitation in anoxic culture experiments[J]. Geology, 2000, 28(12): 1091-1094.
      [7]
      WEAVER T, BURBANK M, LEWIS R, et al.Bio-induced calcite, iron, and manganese precipitation for geotechnical engineering applications[C]// Proceedings of GeoFrontiers 2011: Advances in Geotechnical Engineering. Dallas, 2011: 3975-3983.
      [8]
      CHU J, IVANOV V.Iron- and calcium-based biogrouts for soil improvement[C]// Proceedings of Geo-Congress 2014. Atlanta, 2014: 1596-1601.
      [9]
      HARKES M P, VAN PAASSEN L A, BOOSTER J L, et al. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement[J]. Ecological Engineering, 2010, 36(2): 112-117.
      [10]
      孙潇昊, 缪林昌, 童天志, 等. 微生物沉积碳酸钙固化砂土试验研究[J]. 岩土力学, 2017, 38(11): 3225-3230.
      (SUN Xiao-hao, MIAO Lin-chang, TONG Tian-zhi, et al.Sand solidification test based on microbially-induced precipitation of calcium carbonate[J]. Rock and Soil Mechanics, 2017, 38(11): 3225-3230. (in Chinese))
      [11]
      孙潇昊, 缪林昌, 童天志, 等. 砂土微生物固化过程中尿素的影响研究[J]. 岩土工程学报, 2018, 40(5): 939-944.
      (SUN Xiao-hao, MIAO Lin-chang, TONG Tian-zhi, et al.Effect of methods of adding urea in culture media on sand solidification tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 939-944. (in Chinese))
      [12]
      张慧智, 史学正, 于东升, 等. 中国土壤温度的季节性变化及其区域分异研究[J]. 土壤学报, 2009, 46(2): 227-234.
      (ZHANG Hui-zhi, SHI Xue-zheng, YU Dong-sheng, et al.Seasonal and regional veriations of soil temperature in China[J]. Acta Pedologica Sinica, 2009, 46(2): 227-234. (in Chinese))
      [13]
      彭劼, 何想, 刘志明, 等. 低温条件下微生物诱导碳酸钙沉积加固土体的试验研究[J]. 岩土工程学报, 2016, 38(10): 1769-1774.
      (PENG Jie, HE Xiang, LIU Zhi-ming, et al.Experimental research on influence of low temperature on MICP-treated soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1769-1774. (in Chinese))
      [14]
      GARRITY G, VOS P D, JONES D, et al.Bergey’s manual of systematic bacteriology. volume 3. the firmicutes[M]// Bergey's Manual of Systematic Bacteriology. Springer, 2009: 89-100.
      [15]
      FREDRICKSON J K, FLETCHER M.Subsurface microbiology and biogeochemistry[M]. New York: Wiley, 2001.
      [16]
      JIANG N J, YOSHIOKA H, YAMAMOTO K, et al.Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: Implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP)[J]. Ecological Engineering, 2016, 90:96-104.
      [17]
      ZHANG Y, GUO H X, CHENG X H.Role of calcium sources in the strength and microstructure of microbial mortar[J]. Construction and Building Materials, 2015, 77: 160-167.
      [18]
      徐亚同. pH值、温度对反硝化的影响[J]. 中国环境科学, 1994, 14(4): 308-313.
      (XU Ya-tong.The influence of pH values and temperature on denitrification[J]. China Environmental Science, 1994, 14(4): 308-313. (in Chinese))
    • Related Articles

      [1]WU Ai-qing, WU Qing-hua. Evolution mechanism of dike risks, quick detection of hidden dangers, and technical equipments of emergency rescues[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1310-1328. DOI: 10.11779/CJGE202207010
      [2]CAI Yao-jun, ZHOU Zhao, YANG Xing-guo, WEI Ying-qi, ZHENG Dong-jian, PENG Wen-xiang, ZHONG Qi-ming, WANG Heng. Rapid detection for risk assessment, emergency disposal technology and equipment development of barrier lakes[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1266-1280. DOI: 10.11779/CJGE202207007
      [3]ZHU Cai-hui, HE Hao-nan, LAN Kai-jiang, LI Yu-bo. Influences of increase of moisture content on surrounding soil pressure of large-span tunnels in loess[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 93-98. DOI: 10.11779/CJGE2021S1017
      [4]YANG Zhong-ping, LI Shi-qi, LI Wan-kun, LI Jin, HU Yuan-xin. Effect of moisture content on dynamic response law and failure mode of accumulation slopes under frequent micro-seismic actions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 822-831. DOI: 10.11779/CJGE202105005
      [5]CAI Guo-qing, ZHANG Ce, HUANG Zhe-wen, LI Jun-lin, HOU Jian-long. Experimental study on influences of moisture content on shear strength of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 32-36. DOI: 10.11779/CJGE2020S2006
      [6]WANG Gang, PAN Yi-shan, XIAO Xiao-chun. Detection of effects of rock burst prevention by water injection into coal seam using charge induction method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 311-319. DOI: 10.11779/CJGE201902009
      [7]CAO Ding-feng, SHI Bin, YAN Jun-fan, WEI Guang-qing. Distributed method for measuring moisture content of soils based on C-DTS[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 910-915. DOI: 10.11779/CJGE201405015
      [8]WANG Hailiang, MA Min, YE Chaoliang, ZHAO Changwei. Influence of explosive enlargement and explosive lining on moisture content of soil[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 425-428.
      [9]YAN Chi, SONG Xukun, ZHU Ping, SUN Hongyue, LI Yapo, ZHANG Junfeng. Experimental study on strength characteristics of soda residue with high water content[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1683-1688.
      [10]LIU Bin, NIE Dexin. Study on relation between strength parameter and water content of gouge[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2164-2167.
    • Cited by

      Periodical cited type(7)

      1. 顾浩迪,彭社琴. 滑坡监测中传感器的应用及原理综述. 安徽建筑. 2024(12): 119-122 .
      2. 闫志晓,李雨润,王东升,王永志. 覆水砂土场地中桥梁群桩基础地震响应离心试验研究. 岩土力学. 2023(03): 861-872 .
      3. 咸甘玲,兰景岩,潘旦光,王永志,卢彬荣. 桩顶荷载对软土地基-群桩基础动力相互作用的影响与机理分析. 岩土工程学报. 2023(S2): 67-72 . 本站查看
      4. 闫志晓,李雨润,王永志. 砂土场地高承台群桩基础地震响应特征试验研究. 湖南大学学报(自然科学版). 2022(07): 138-147 .
      5. 王永志,王体强,袁晓铭,张雪东,陈卓识. 动力离心试验反演分析砂土模量阻尼比特征与可靠性. 岩石力学与工程学报. 2022(08): 1717-1727 .
      6. 王永志,汤兆光,张雪东,孙锐,张宇亭. 超重力离心模型试验中孔隙水压测试影响因素与标定方法. 岩石力学与工程学报. 2022(S2): 3433-3443 .
      7. 汤兆光,王永志,王孟伟,孙锐,刘远鹏,杨阳. 超重力试验孔压增量模型与适用性研究. 岩土工程学报. 2022(S2): 25-29 . 本站查看

      Other cited types(8)

    Catalog

      Article views (385) PDF downloads (151) Cited by(15)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return