• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
XU Cheng-shun, LI Yan-mei, PAN Xia, GENG Lin. Experimental study on effect of initial static pore water pressure on static and dynamic shear properties of sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1050-1057. DOI: 10.11779/CJGE201906008
Citation: XU Cheng-shun, LI Yan-mei, PAN Xia, GENG Lin. Experimental study on effect of initial static pore water pressure on static and dynamic shear properties of sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1050-1057. DOI: 10.11779/CJGE201906008

Experimental study on effect of initial static pore water pressure on static and dynamic shear properties of sand

More Information
  • Received Date: May 01, 2018
  • Published Date: June 24, 2019
  • A series of undrained cyclic torsional shear tests and monotonic torsional shear tests are carried out on Fujian standard sand and Hutuo River fine sand under different initial static pore water pressures by using the hollow cylinder torsional shear apparatus in order to emphatically discuss the effects of the initial static pore water pressure on the development of the excess pore water pressure and undrained shear strength. The experimental results show that the initial static pore water pressure has a significant effect on the development of the excess pore water pressure, which affects the static and dynamic shear characteristics of sand. Specifically, during the undrained cyclic shear process, the greater initial static pore water pressure leads to the faster development of the excess pore water pressure and deformation. During the undrained monotonic shearing process, the greater the initial static pore water pressure, the greater the negative excess pore water pressure during the sand dilatancy, which significantly increases the strength of the sand. Based on the test results, the mechanism of the influences of the initial static pore water pressure on the excess pore water pressure and static and dynamic shear characteristics is preliminarily discussed. According to the results, the influences of the initial static pore water pressure on the anti-liquefaction strength of sand should be fully considered when we investigate the static and dynamic shear characteristics of soil (partially saturated soil) below the groundwater table, especially the liquefaction problem. In laboratory tests, the initial static pore water pressure (back pressure) should be determined according to the depth of underground water level where the sand is located.
  • [1]
    BRAND E W.Back pressure effects on the undrained strength characteristics of softclay[J]. Soils and Foundations, 1975, 15(2): 1-16.
    [2]
    AHNBERG H.Effects of back pressure and strain rate used in triaxial testing of stabilize dorganic soils and clays[J]. Geotechnical Testing Journal, 2004, 27(3): 250-259.
    [3]
    ALLAM M M, SRIDHARAN A.Influence of the back pressure technique on the shear strength of soils[J]. Geotechnical Testing Journal, 1980, 3(1): 35-40.
    [4]
    黄博, 汪清静, 凌道盛, 等. 饱和砂土三轴试验中反压设置与抗剪强度的研究[J]. 岩土工程学报, 2012, 34(7): 1313-1319.
    (HUANG Bo, WANG Qing-jing, LING Dao-sheng, et al.Effects of back pressure on shear strength of saturated sand in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1313-1319. (in Chinese))
    [5]
    HYODO M, YONEDA J, YOSHIMOTO N, et al.Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 2013, 53(2): 299-314.
    [6]
    MIYAZAKI K, MASUI A, HANEDA H, et al.Variable-compliance-type constitutive model for methane hydrate bearing sediment[C]// Proceedings of the 6th International Conference on Gas Hydrate. Vancouver, 2008.
    [7]
    蒋明镜, 朱方园, 申志福. 试验反压对深海能源土宏观力学特性影响的离散元分析[J]. 岩土工程学报, 2013, 35(2): 219-226.
    (JIANG Ming-jing, ZHU Fang-yuan, SHEN Zhi-fu.Influence of back pressure on macro-mechanical properties of methane hydrate soils by DEM analyses[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 219-226. (in Chinese))
    [8]
    许成顺, 刘晨, 刘海强, 等. 竖向-扭转双向耦合剪切仪功能析及应用[J]. 北京工业大学学报, 2013(2): 233-238.
    (XU Cheng-shun, LIU Chen, LIU Hai-qiang, et al.Function analysis and application of vertical-torsional coupling shear apparatus[J]. Journal of Beijing University of Technology, 2013(2): 233-238. (in Chinese))
    [9]
    李伟华, 郑洁. 饱和度对平面P波入射下自由场地地震反应的影响分析[J]. 岩土工程学报, 2017, 39(3): 427-435.
    (LI Wei-hua, ZHENG Jie.Effects of saturation on free-field responses of site due to plane P-wave incidence[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 427-435. (in Chinese))
    [10]
    许成顺, 耿琳, 杜修力, 等. 反压对土体强度特性的影响试验研究及其影响机理分析[J]. 土木工程学报, 2016, 49(3): 105-111.
    (XU Cheng-shun, GENG Lin, DU Xiu-li, et al.Effect of back pressure on shear strength of sand: experimental studyand mechanism analysis[J]. China Civil Egineering Journal, 2016, 49(3): 105-111. (in Chinese))
    [11]
    王明洋, 钱七虎. 爆炸波作用下准饱和土的动力模型研究[J]. 岩土工程学报, 1995, 17(6): 103-110.
    (WANG ming-yang, QIAN Qi-hu. Study on the dynamic model of partially saturated soil under the action of explosive wave[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(6): 103-110. (in Chinese))
    [12]
    刘建新, 宋华, 赵跃堂, 等. 准饱和砂土中平面压缩波传播[J]. 防灾减灾工程学报, 2004, 24(1): 86-92.
    (LIU Jian-xin, SONG Hua, ZHAO Yue-tang, et al.Propagation of plane compress-wave in quasic-saturated sandy soil[J]. Journal of Disaster Prevention and Mitigation, 2004, 24(1): 86-92. (in Chinese))
    [13]
    王滢, 高广运. 准饱和土中圆柱形衬砌的瞬态动力响应分析[J]. 岩土力学, 2015, 36(12): 3400-3409.
    (WANG Ying, GAO Guang-yun.Analysis of transient dynamic response of cylindrical lined cavity in nearly saturated soil[J]. Rock and Soil Mechanics, 2015, 36(12): 3400-3409. (in Chinese))
    [14]
    陈炜昀, 夏唐代, 黄睿, 等. P1波在非饱和土地基表面的反射特性[J]. 工程力学, 2013, 30(9): 56-62.
    (CHEN Wei-yun, XIA Tang-dai, HUANG Rui, et al.Reflection characteristics of P1 waves at the free boundray of unsaturated soil[J]. Engineering Mechanics, 2013, 30(9): 56-62. (in Chinese))
    [15]
    SMEULDERS D M J. On wave propagation in saturated and partially saturated porous media[J]. Thesis Technische Univ, 1992.
    [16]
    周新民. 准饱和土波动特性及动力响应研究[D]. 杭州: 浙江大学, 2006.
    (ZHOU Xin-min.Research on wave Propagation characteristics and dynamic response in partially saturated soil[D]. Hangzhou: Zhejiang University, 2006. (in Chinese))
  • Cited by

    Periodical cited type(6)

    1. 李永强,许言,陈波,熊健辉,卢玢宇. 反压诱导有效应力增生模式与土体强度关联机制研究. 岩土力学. 2024(08): 2338-2350 .
    2. 陈波,李永强,刘旭锋,周仰新,许言. 颗粒材料在三轴试验中滞滑现象的研究. 防灾减灾工程学报. 2023(03): 568-575 .
    3. 沈扬,马英豪,芮笑曦. 波浪荷载作用下饱和钙质砂孔压特性及累积损失能量试验研究. 岩土力学. 2023(08): 2195-2204 .
    4. 刘钢,郭文博,赵明志,张冲. 辽宁台安砂土液化特性动三轴试验研究. 地震工程学报. 2022(03): 558-569 .
    5. 刘涉川,王安辉,章定文,林文丽. 可液化土中劲芯复合桩的地震响应特征. 土木与环境工程学报(中英文). 2022(06): 42-51 .
    6. 赵蕊,李小林. 基于有效应力原理的红黏土孔隙水压力演化规律及破坏机理研究. 土工基础. 2022(05): 771-774+781 .

    Other cited types(8)

Catalog

    Article views (263) PDF downloads (207) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return