• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Jian, XU Jie, YU Liang-gui, LUO Ling-hui. Microscopic mechanism regarding permeability anisotropy of kaolin-montmorillonite mixed clays[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1005-1013. DOI: 10.11779/CJGE201906003
Citation: ZHOU Jian, XU Jie, YU Liang-gui, LUO Ling-hui. Microscopic mechanism regarding permeability anisotropy of kaolin-montmorillonite mixed clays[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1005-1013. DOI: 10.11779/CJGE201906003

Microscopic mechanism regarding permeability anisotropy of kaolin-montmorillonite mixed clays

More Information
  • Received Date: September 10, 2018
  • Published Date: June 24, 2019
  • A series of experiments are conducted by using the triaxial permeameters to study the influences of the incorporation ratio of bentonite and the effective consolidation stress on permeability anisotropy, and the corresponding microscopic mechanisms are investigated. The results show that: (1) When the bentonite is added, the permeability coefficient and permeability anisotropy of the mixed soil decrease significantly, but with the increasing incorporation ratio of bentonite, the permeability anisotropy tends to be stable because the effective pore proportion ratio tends to remain constant. (2) With the increasing effective consolidation stress, the permeability anisotropy of the mixed soil increases. When the effective consolidation stress increases, both the effective pore area ratio and the effective pore proportion ratio increase, which indicates that the ratio of vertical to horizontal effective pore areas is increasing. (3) Considering the influences of the incorporation ratio of bentonite and the effective consolidation stress comprehensively, if intending to quantitatively analyze the impact of these two factors from the perspective of microscopic analysis, it is recommended to use the effective pore proportion ratio as the parameter of microstructure.
  • [1]
    MAIR R J.Tunnelling and geotechnics: new horizons[J]. Géotechnique, 2008, 58(9): 695-736.
    [2]
    AL-SHARRAD M A, GALLIPOLI D, WHEELER S J, et al. Experimental investigation of evolving anisotropy in unsaturated soils[J]. Géotechnique, 2017, 67(12): 1033-1049.
    [3]
    BASAK P.Soil structure and its effects on hydraulic conductivity[J]. Soil Science, 1972, 114(6): 417-422.
    [4]
    TAVENAS F, JEAN P, LEBLOND P, et al.The permeability of natural soft clays, Part II: Permeability characte[J]. Canadian Geotechnical Journal, 1983, 20(4): 645-660.
    [5]
    LEROUEIL S, BOUCLIN G, TAVENAS F, et al.Permeability anisotropy of natural clays as a function of strain[J]. Canadian Geotechnical Journal, 1990, 27(5): 568-579.
    [6]
    ADAMS A L, NORDQUIST M T J, GERMAINE J T, et al. Permeability anisotropy and resistivity anisotropy of mechanically compressed mudrocks[J]. Canadian Geotechnical Journal, 2016, 53(9): 1474-1482.
    [7]
    KENNEY T C.Permeability ratio of repeatedly layered soils[J]. Géotechnique, 1963, 13(4): 325-333.
    [8]
    K-J-Witt J Brauns. Permeability-anisotropydue to particle shapej[J]. Geotech Engrg, 1983, 109: 1181-1187.
    [9]
    AL-TABBAA, WOOD D M.Some measurements of the permeability of kaolin[J]. Géotechnique, 1987, 37: 499-503.
    [10]
    DAIGLE H, DUGAN B.Permeability anisotropy and fabric development: A mechanistic explanation[J]. WaterResour Res, 2011, 47: W12517.
    [11]
    柯瀚, 吴小雯, 张俊, 等. 基于优势流及各向异性随上覆压力变化的填埋体饱和渗流模型[J]. 岩土工程学报, 2016, 38(11): 1957-1964.
    (KE Han, WU Xiao-wen, ZHANG Jun, et al.Modeling saturated permeability of municipal solid waste based on compression change of its preferential flow and anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1957-1964. (in Chinese))
    [12]
    ZHANG D M, MA L X, ZHANG J, et al.Ground and tunnel responses induced by partial leakage in saturated clay with anisotropic permeability[J]. Engineering Geology, 2015, 189: 104-115.
    [13]
    WONGSAROJ J, SOGA K, MAIR R J.Modelling of long-term ground response to tunnelling under St James' Park, London[J]. Géotechnique, 2007, 57(1): 75-90.
    [14]
    王宝峰. 孔隙溶液环境对黏土力学特性影响的试验研究[D]. 杭州: 浙江大学, 2017.
    (WANG Bao-feng.Experimental study on influence of pore solution environment on mechanical properties of clay[D]. Hangzhou: Zhejiang University, 2017. (in Chinese))
    [15]
    ZAKERI A, CLUKEY E C, KEBADZE E B, et al.Fatigue analysis of offshore well conductors, Part I: Study overview and evaluation of Series 1 centrifuge tests in normally consolidated to lightly over-consolidated kaolin clay[J]. Applied Ocean Research, 2016, 57:78-95.
    [16]
    MESRI and Olson. Mechanisms controlling thepermeability of clays[J]. Claysand ClayMinerals, 1971, 19: 151-158.
    [17]
    HORPIBULSUK S, YANGSUKKASEAM N, CHINKULKIJNIWAT A, et al.Compressibility and permeability of Bangkok clay compared with kaolinite and bentonite[J]. Applied Clay Science, 2011, 52(1/2): 150-159.
    [18]
    ASTM D5084—03 Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter[S]. 2003.
    [19]
    赵铁军, 姜福香. 海底隧道工程耐久性技术[M]. 北京: 人民交通出版社, 2010.
    (ZHAO Tie-jun, JIANG Fu-xiang.Submarine tunnel engineering durability technology[M]. Beijing: China Communications Press, 2010. (in Chinese))
    [20]
    李国刚. 中国近海表层沉积物中黏土矿物的组成、分布及其地质意义[J]. 海洋学报(中文版), 1990(4): 470-479.
    (LI Guo-gang.Composition, distribution and geological significance of clay minerals in surface sediments from china offshore[J]. Journal of Oceanography, 1990(4): 470-479. (in Chinese))
    [21]
    吉利明, 邱军利, 夏燕青, 等. 常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性[J]. 石油学报, 2012, 33(2): 249-256.
    (JI Li-ming, QIU Jun-li, XIA Yan-qing, et al.Micro-pore characteristics and methane absorption properties of common clay minerals by electron microscope scanning[J]. Acta Petrolei Sinica, 2012, 33(2): 249-256. (in Chinese))
    [22]
    何俊, 王宇, 万娟. 溶液作用下黏土的界限含水率及渗透试验[J]. 地下空间与工程学报, 2013, 9(6): 1277-1282.
    (HE Jun, WANG Yu, WAN Juan.Consistency limits and hydraulic conductivity of clay under the effect of solution[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(6): 1277-1282. (in Chinese))
    [23]
    陈永贵, 雷宏楠, 贺勇, 等. 膨润土-红黏土混合土对NaCl溶液的渗透试验研究[J]. 中南大学学报(自然科学版), 2018, 49(4): 910-915.
    (CHEN Yong-gui, LEI Hong-nan, HE Yong, et al.Experimental study of permeability of bentonite-laterite mixtures for salt solutions[J]. Journal of Central South University (Science and Technology), 2018, 49(4): 910-915. (in Chinese))
    [24]
    YANG Y, APLIN A.Permeability and petrophysical propertiesof 30 natural mudstones[J]. J Geophys Res, 2007, 112: B03206.
    [25]
    CLEMENLTA LAPIERRE.Mercury intrusion and permeability of Louiseville clay[J]. Can Geotech J, 1990, 27: 761-773.
    [26]
    CLENNELL M B, DEWHURST D N, BROWN K M, et al.Permeability anisotropy of consolidated clays[J]. Geological Society, London, Special Publications, 1999(158): 79-96.
    [27]
    曹洋. 波浪作用下原状软黏土动力特性与微观结构关系试验研究[D]. 杭州: 浙江大学, 2013.
    (CAO Yang.Experimental study on relationship between dynamic characteristics and microstructure of undisturbed soft clay under wave action[D]. Hangzhou: Zhejiang University, 2013. (in Chinese))
    [28]
    党发宁, 刘海伟, 王学武, 等. 基于有效孔隙比的黏性土渗透系数经验公式研究[J]. 岩石力学与工程学报, 2015, 34(9): 1909-1917.
    (DANG Fa-ning, LIU Hai-wei, WANG Xue-wu, et al.Empirical formulas of permeability of clay based on effective pore ratio[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9): 1909-1917. (in Chinese))
    [29]
    崔德山, 项伟, 曹李靖, 等. ISS 减小红色黏土结合水膜的试验研究[J]. 岩土工程学报, 2010, 32(6): 944-949.
    (CUI De-shan, XIANG Wei, CAO Li-jing, et al.Experimental study on reducing thickness of adsorbed water layer for red clay particles treated by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 944-949. (in Chinese))
    [30]
    王秀艳, 刘长礼. 深层黏性土渗透释水规律的探讨[J].岩土工程学报, 2003, 25(3): 308-312.
    (WANG Xiu-yan, LIU Chang-li.Discussion on permeability of deep clayey soil[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 308-312. (in Chinese))
    [31]
    冯晓腊, 沈孝宇. 饱和黏性土的渗透固结特性及其微观机制的研究[J]. 水文地质工程地质, 1991(1): 6-12.
    (FENG Xiao-la, SHEN Xiao-yu.Study on the infiltration and consolidation characteristics of saturated clay and its microscopic mechanism[J]. Hydrogeology and Engineering Geology, 1991(1): 6-12.(in Chinese))
    [32]
    TANAKA. Poer size distribution of clayey soils measured by mercuryintrusion porosimetry and its relation to hydraulic conductivity[J]. Soils and Foundations, 43(6): 63-73.
  • Related Articles

    [1]Study on viscosity-temperature effect of petroleum-contaminated soil under synergistic solidification[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240354
    [2]HUANG Ying-hao, DAI Ji-qun, XU Kai. Flowability and viscosity of freshly solidified dredged materials[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 235-244. DOI: 10.11779/CJGE202202004
    [3]LI Pei-xian, WAN Hao-ming, XU Yue, YUAN Xue-qi, ZHAO Yin-peng. Parameter inversion of probability integration method using surface movement vector[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 767-776. DOI: 10.11779/CJGE201804022
    [4]DENG Jian, XIAO Ming, XIE Bing-bing, CHEN Jun-tao. Constitutive relation and integration algorithm for rock discontinuities under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1048-1057. DOI: 10.11779/CJGE201706010
    [5]RONG Mian-shui, LI Xiao-jun. Time-domain integral method considering residual strain of soils under irregular loads and its application[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1239-1245.
    [6]LI Wu, YAO Wenjuan, ZHU Hehua, CAI Yongchang. Application of Monte Carlo numerical integration in natural element method[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 698-704.
    [7]ZHONG Yang, SUN Aiming, ZHOU Fulin, ZHANG Yongshan. Analytical solution for rectangular thin plate on elastic foundation with four edges free by finite cosine integral transform method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 2019-2022.
    [8]WANG Lizhong, PAN Dongzi, LING Daosheng. Analysis on integral transform of the wave-induced response in seabed and its application[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 847-852.
    [9]Wang Huaizhong, Sun Jun. Local Error Estimator of Energy and Adaptive Time-Stepping Procedure for Direct Integration Method[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(6): 32-41.
    [10]Zhang Wugong. Implicit Time Integration of Elasto-Viscoplastic Multlaminate Model for Jointed Rocks[J]. Chinese Journal of Geotechnical Engineering, 1990, 12(6): 42-54.
  • Cited by

    Periodical cited type(2)

    1. 刘要来,王堡生,周红波,赵二峰,李章寅. 基于凸集比例因子和WOA-Kriging模型的重力坝非概率可靠性分析. 长江科学院院报. 2025(03): 164-170 .
    2. 魏博文,张升,袁冬阳,徐富刚. 基于概率—模糊—区间混合模型和改进分枝限界法的重力坝可靠性分析方法. 水利学报. 2022(12): 1476-1489 .

    Other cited types(5)

Catalog

    Article views PDF downloads Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return