• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MA Peng, ZHUANG Yan-feng, LIU Zhi-tao. Experimental study on expandability of montmorillonite modified by electrochemical method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 900-907. DOI: 10.11779/CJGE201905013
Citation: MA Peng, ZHUANG Yan-feng, LIU Zhi-tao. Experimental study on expandability of montmorillonite modified by electrochemical method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 900-907. DOI: 10.11779/CJGE201905013

Experimental study on expandability of montmorillonite modified by electrochemical method

More Information
  • Received Date: June 19, 2018
  • Published Date: May 24, 2019
  • Based on the characteristics of electrochemistry, a new idea for in-situ treatment of expansive soils is proposed, with a high charge hydroxy aluminum ion solution as the electrolyte, and the modification of montmorillonite by hydroxyl aluminum ions into the soils under the effect of applied electric field. From the macroscopic point of view, the particle analysis is conducted, and the limiting moisture content and swelling characteristics of montmorillonite before and after electrochemical modification are studied. The results show that the swelling characteristics of the modified montmorillonite decrease significantly, and the soils in the anode area reach the performance requirements of the non-expansive soils. The X-ray diffraction tests on the montmorillonite before and after modification are carried out from the microscopic layer. The hygroscopic sensitivity between the lattice layers of the montmorillonite after modification is obviously reduced, indicating that the hydroxyl aluminum ions enter into the interlayer, replace the cations and reduce the hydrophilicity of the mineral lattice. The changes in the weight loss of montmorillonite before and after the modification at different temperatures are studied through thermal analysis. It is shown that the hydroxyl aluminum ions enter into the double layers to exchange cations and attach to the surface of clay particles, reducing the thickness of the double layers and the expansibility of the montmorillonite.
  • [1]
    张伟利. 化学法改良膨胀土的试验研究[D]. 杨凌: 西北农林科技大学, 2014.
    (ZHANG Wei-li.Experimental study on the chemical modication of expansive soil[D]. Yangling: Northwest A&F University, 2014. (in Chinese))
    [2]
    刘清秉, 项伟, 吴云刚, 等. 膨胀土工程特性及改性理论研究[M]. 武汉: 中国地质大学出版社, 2015.
    (LIU Qing-bing, XIANG Wei, WU Yun-gang, et al.Research on engineering characteristics and modification theory of expansive soil[M]. Wuhan: China University of Geosciences Press, 2015. (in Chinese))
    [3]
    BJERRUM L, MOUN J, ELIDE O.Application of electro-osmosis to a foundation problem in a norweigian quick clay[J]. Géotechnique, 1967, 17(3): 214-235.
    [4]
    BURNOTTE F, LEFEBVRE G, GRONDIN G.A case record of electroosmosis consolidation of soft clay with improved[J]. Canadian Geotechnical Journal, 2004, 41(6): 1038-1053.
    [5]
    GRAY D H, MITCHELL J K.Fundamental aspects of electro-osmosis in soils[J]. Journal of the Soil Mechanics and Foundation Division, ASCE. 1967, 93(6): 209-236.
    [6]
    INGLES O G, METCALF J B.Soil stablizer, principle and practice[M]. Sydney: Butterworths, 1972.
    [7]
    BELL F G.Engineering treatment soils[M]. 1st ed. London: E&F Spon, 1993.
    [8]
    CHEN S C, OU C Y, WANG M K.Injection of saline solutions to improve the electro-osmotic pressure and consolidation of foundation soil[J]. Applied Clay Science, 2009, 44(44): 218-224.
    [9]
    OU C Y, SHAOCHI C, WANG Y G.On the enhancement of electroosmotic soil improvement by the injection of saline solutions[J]. Applied Clay Science, 2009, 44(1/2): 130-136.
    [10]
    CHANG H W, KRISHNA P G, CHIEN S C, et al.Electro-osmotic chemical treatments: effects of Ca2+ concentration on the mechanical strength and pH of kaolin[J]. Clays and Clay Minerals, 2010, 58(2): 154-163.
    [11]
    CHEN S C, OU C Y, LEE Y C.A novel electroosmotic chemical treatment technique for soil improvement[J]. Applied Clay Science, 2010, 50(4): 481-492.
    [12]
    ALSHAWABKEH A N, SHEHAN T C.Stabilizing fine grained soils by phosphate electrogrouting[J]. Journal of the Transportation research Board, 2002, 1787(1): 53-60.
    [13]
    ALSHAWABKEH A N, SHEHAN T C.Soft soil stabilization by ionic injection under electric fields[J]. Proceedings of the Institution of Civil Engineers: Ground Improvement, 2003, 7(4): 177-185.
    [14]
    李洪艺, 张澄博, 张永定. 盐溶液注入对电动加固软土影响的研究进展[C]// 2011 年全国工程地质学术年会论文集. 北京: 科学出版社, 2011: 288-293.
    (LI Hong-yi, ZHANG Cheng-bo, ZHANG Yong-ding.Research progress on the effect of salt solution injection on electrically-enhanced soft soil[C]// 2011 National Academic Symposium of Engineering Geology. Beijing: Science Press, 2011: 288-293. (in Chinese))
    [15]
    邵鸿飞, 刘元俊, 冀克俭, 等. 羟基铝离子柱撑蒙脱石材料的制备与结构表征[J]. 化学分析计量, 2015, 24(1): 61-63.
    (SHAO Hong-fei, LIU Yuan-jun, YAN Ke-jian, et al.Preparation and structure characterization of hydroxy aluminum ion pillared montmorillonite materials[J]. Chemical Analysis and Measurement, 2015, 24(1): 61-63. (in Chinese))
    [16]
    赵成刚, 白冰. 土力学原理[M]. 北京: 清华大学出版社, 2004.
    (ZHAO Cheng-gang, BAI Bing.Principles of soil mechanics[M]. Beijing: Tsinghua University Press, 2004. (in Chinese))
    [17]
    章庆和. 膨润土差热曲线与物理化学特性的关系[J]. 矿物学报, 1989, 9(2): 2177-2180.
    (ZHANG Qing-he.Relationship between differential thermal curve and physical and chemical properties of bentonite[J]. Acta Mineralogica Sinica, 1989, 9(2): 2177-2180. (in Chinese))
  • Cited by

    Periodical cited type(19)

    1. 洪嘉伟,张彬,潘道明. 隧道注浆圈渗透系数对邻侧隧道的影响. 交通科技与管理. 2025(01): 147-151 .
    2. 袁立刚,冷伍明,姜涌,朱铁环,安永林,岳健. 降雨对江底凹形纵坡隧道排水池区段的影响及排水报警方法. 铁道科学与工程学报. 2025(03): 1369-1382 .
    3. 陈云娟,王乐宁,周宗青,贾润枝,杨卓,罗平利,刘梦悦. 基于海底隧道衬砌孔隙水压力的涌水量预测方法及工程应用. 应用基础与工程科学学报. 2024(01): 288-300 .
    4. 韩智铭,闫科宇,王雪,朱正国,崔会敏. 有限地层三孔并行海底隧道渗流场解析研究. 铁道工程学报. 2024(01): 45-52 .
    5. 汤钰,王华宁,宋飞. 渗透各向异性地层中隧洞稳态渗流场的半解析预测模型. 力学季刊. 2024(02): 473-482 .
    6. 韩智铭,闫科宇,崔会敏,刘庆宽. 基于等效面积法的三孔并行海底隧道渗流场解析研究. 工程力学. 2024(S1): 112-116+149 .
    7. 高启程,姜启武,陈志杰,赖鹏安. 考虑损伤效应的隧道二维渗流场解析及涌水量预测. 人民长江. 2024(10): 197-204+211 .
    8. 李航达,杨广鹏,韩智铭. 多洞并行海底隧道最佳覆岩厚度变化规律研究. 石家庄铁道大学学报(自然科学版). 2024(03): 40-46 .
    9. 卢玉东,国金琦,程大伟,毛兴隆. 考虑固液二相互态特性的流固耦合模型. 中国公路学报. 2023(01): 58-69 .
    10. 张兵海,崔炜,张石磊,杜三林,邓检强,刘毅,朱银邦. 临近水库的隧洞二维渗流场解析解及工程应用研究. 水利水电技术(中英文). 2023(03): 126-134 .
    11. 马少坤,陈彩洁,段智博,刘莹. 基于镜像法的有限含水层内隧道渗流场解析解及其验证. 工程力学. 2023(05): 172-181 .
    12. 胡红星. 富水破碎带地层TBM隧道围岩稳定性研究. 科技与创新. 2023(17): 39-44 .
    13. 乔彤,周建,张天骄,蒋熠诚. 考虑渗透各向异性的水下非圆形隧道渗流场解析. 工程科学与技术. 2023(05): 109-117 .
    14. 徐锋. 隧道穿越富水断层多场耦合特征分析及施工控制技术. 铁道建筑技术. 2022(05): 148-152 .
    15. 金波,胡明,方棋洪. 考虑渗流效应的深埋海底隧道围岩与衬砌结构应力场研究. 力学学报. 2022(05): 1322-1330 .
    16. 郑培超,闫科宇,王雪,韩智铭. 海底隧道三孔并行渗流场泄压规律研究. 现代隧道技术. 2022(S1): 353-362 .
    17. 王昊,刘广,王静峰,张兴其,浦玉炳,严中,丁兆东. 少荃湖湖底隧道工程渗流场特性分析. 人民珠江. 2021(10): 63-67 .
    18. 李沣展,岳健,安永林,孙超杰,谭仁华. 河底浅埋小净距隧道施工期渗流性状分析. 湖南科技大学学报(自然科学版). 2021(04): 47-54 .
    19. 叶亮,丁文其,张清照. 地下水对岩石隧道衬砌作用计算方法的探讨. 现代隧道技术. 2021(S1): 326-335 .

    Other cited types(13)

Catalog

    Article views (261) PDF downloads (210) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return