• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XIE Yue-han, TANG Chao-sheng, YIN Li-yang, LÜ Chao, JIANG Ning-jun, SHI Bin. Mechanical behavior of microbial-induced calcite precipitation (MICP)-treated soil with fiber reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 675-682. DOI: 10.11779/CJGE201904010
Citation: XIE Yue-han, TANG Chao-sheng, YIN Li-yang, LÜ Chao, JIANG Ning-jun, SHI Bin. Mechanical behavior of microbial-induced calcite precipitation (MICP)-treated soil with fiber reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 675-682. DOI: 10.11779/CJGE201904010

Mechanical behavior of microbial-induced calcite precipitation (MICP)-treated soil with fiber reinforcement

More Information
  • Received Date: May 01, 2018
  • Published Date: April 24, 2019
  • Microbial cementation can effectively improve the strength of soil, but it can also lead to the obvious brittleness at soil failure. In order to balance the adverse effect of brittleness of the bio-cemented soil, a modified method of combining the fiber reinforcement with the microbial cementation is suggested. The polypropylene fibers, with mass fraction of 0%, 0.05%, 0.15%, 0.25% and 0.30%, are uniformly mixed with silica sand, then the soil samples are bio-cemented based on microbial-induced calcite precipitation (MICP). A series of unconfined compression tests are also carried out, the calcium carbonate content in each group is determined by acid pickling, and the morphological structure of fiber surfaces in soil matrix is characterized by using the scanning electron microscopy (SEM). The result shows that: (1) The fiber reinforcement can greatly improve the unconfined compressive strength and residual strength of soil samples, and can significantly improve the toughness of soil failure. (2) The fiber content has important influence on the mechanical properties of bio-cemented soil. The unconfined compressive strength with fiber content shows a trend of decrease after the first increase in general, the optimal fiber content is 0.15%, and the residual strength after peak is monotonically related with the fiber content. (3) The stress-strain curve of the microorganism solidified sandy soil is in a step-down mode, and the wave type relief features are locally exhibited. (4) The fiber reinforcement can improve the precipitation efficiency and yield of microbial-induced calcite, and at the same time, the bio-cementation effect of the calcium carbonate can promote the effect of fiber reinforcement. The combination of fiber reinforcement technology and MICP technology can realize complementary advantages, which has positive significance for improving the safety and stability of construction.
  • [1]
    DEJONG J T, SOGA K, KAVAZANJIAN E, et al.Biogeochemical processes and geotechnical applications: progress, opportunities and challenges[J]. Géotechnique, 2013, 63(4): 287-301.
    [2]
    DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al.Bio-mediated soil improvement[J]. Ecological Engineering, 2010, 36(2): 197-210.
    [3]
    MARTINEZ B C, DEJONG J T, GINN J, et al.Experimental optimization of microbial-induced carbonate precipitation for soil improvement[J]. Journal of Geotechnical & Geo- environmental Engineering, 2013, 139(4): 587-598.
    [4]
    QABANY A A, SOGA K, SANTAMARINA C.Factors affecting efficiency of microbially induced calcite precipitation[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2012, 138(8): 992-1001.
    [5]
    何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653.
    (HE Jia, CHU Jian, LIU Han-long, et al.Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese))
    [6]
    李明东, LI Lin, 张振东, 等. 微生物矿化碳酸钙改良土体的进展、展望与工程应用技术设计[J]. 土木工程学报, 2016(10): 80-87.
    (LI Ming-dong, LI Lin, ZHANG Zhen-dong, et al.Review, outlook and application technology design on soil improvement by microbial induced calcium carbonate precipitation[J]. China Civil Engineering Journal, 2016(10): 80-87. (in Chinese))
    [7]
    DEJONG J T, FRITZGES M B, NÜSSLEIN K. Microbially induced cementation to control sand response to undrained shear[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2006, 132(11): 1381-1392.
    [8]
    VAN PAASSEN L A, GHOSE R, VAN Der LINDEN T J, et al. Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1721-1728.
    [9]
    程晓辉, 杨钻, 李萌, 等. 岩土材料微生物改性的基本方法综述[J]. 工业建筑, 2015, 7: 1-7.
    (CHENG Xiao-hui, YANG Zhan, LI Meng, et al.Microbial modified geomaterials: a methodology review[J]. Industrial Construction, 2015, 7: 1-7. (in Chinese))
    [10]
    CHU J, IVANOV V, STABNIKOV V, et al.Microbial method for construction of aquaculture pond in sand[J]. Géotechnique, 2013, 63(10): 871-875.
    [11]
    钱春香, 罗勉, 潘庆峰, 等. 自修复混凝土中微生物矿化方解石的形成机制[J]. 硅酸盐学报, 2013(5): 620-626.
    (QIAN Chun-xiang, LUO Mian, PAN Qing-feng, et al.Mechanism of microbially induced calcite precipitation in self-healing concrete[J]. Journal of the Chinese Ceramic Society, 2013(5): 620-626. (in Chinese))
    [12]
    钱春香, 王安辉, 王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36(6): 1537-1548.
    (QIAN Chun-xiang, WANG An-hui, WANG Xin.Advances of soil improvement with bio-grouting[J]. Rock and Soil Mechanics, 2015, 36(6): 1537-1548. (in Chinese))
    [13]
    崔明娟, 郑俊杰, 章荣军, 等.化学处理方式对微生物固化砂土强度影响研究[J]. 岩土力学, 2015, 36(增刊1): 392-396.
    (CUI Ming-juan, ZHENG Jun-jie, ZHANG Rong-jun, et al.Study of effect of chemical treatment on strength of bio-cemented sand[J]. Rock and Soil Mechanics, 2015, 36(S1): 392-396. (in Chinese))
    [14]
    崔明娟, 郑俊杰, 赖汉江. 颗粒粒径对微生物固化砂土强度影响的试验研究[J]. 岩土力学, 2016(增刊2): 397-402.
    (CUI Ming-jun, ZHENG Jun-jie, LAI Han-jiang.Experimental study of effect of particle size on strength of bio-cemented sand[J]. Rock and Soil Mechanics, 2016(S2): 397-402. (in Chinese))
    [15]
    崔明娟, 郑俊杰, 赖汉江. 菌液注射方式对微生物固化砂土动力特性影响试验研究[J]. 岩土力学, 2017, 38(11): 3173-3178.
    (CUI Ming-juan, ZHENG Jun-jie, LAI Han-jiang.Effect of method of biological injection on dynamic behavior for bio-cemented sand[J]. Rock and Soil Mechanics, 2017, 38(11): 3173-3178. (in Chinese))
    [16]
    刘璐, 沈扬, 刘汉龙, 等. 微生物胶结在防治堤坝破坏中的应用研究[J]. 岩土力学, 2016, 37(12): 3410-3416.
    (LIU Lu, SHEN Yang, LIU Han-long, et al.Application of bio-cement in erosion control of levees[J]. Rock and Soil Mechanics, 2016, 37(12): 3410-3416. (in Chinese))
    [17]
    刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45.
    (LIU Han-long, XIAO Peng, XIAO Yang, et al.Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45. (in Chinese))
    [18]
    JIANG N J, YOSHIOKA H, YAMAMOTO K, et al.Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP)[J]. Ecological Engineering, 2016, 90: 96-104.
    [19]
    JIANG N J, SOGA K.The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures[J]. Géotechnique, 2016, 67(1): 42-55.
    [20]
    TOÉ Casagrande, MICHÉLE Dal, COOP M R, et al. Behavior of a fiber-reinforced bentonite at large shear displacements[J]. Journal of Geotechnical and Geo- environmental Engineering, 2006, 132(11): 1505-1508.
    [21]
    CONSOLI N C, VENDRUSCOLO M A.Fiber reinforcement effects on sand considering a wide cementation range[J]. Geotextiles & Geomembranes, 2009, 27(3): 196-203.
    [22]
    GRAY D H, AL-REFEAI T.Behavior of fabric versus fiber-reinforced sand[J]. Geotechnical and Geological Engineering, 1986, 112(8): 804-820.
    [23]
    唐朝生, 施斌, 高玮, 等. 含砂量对聚丙烯纤维加筋黏性土强度影响的研究[J]. 岩石力学与工程学报, 2007, 26(a01): 2968-2973.
    (TANG Chao-sheng, SHI Bin, GAO Wei, et al.Study on effects of sand content on strength of polypropylene fiber reinforced clay soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(a01): 2968-2973. (in Chinese))
    [24]
    SANTOS APSD, CONSOLI N C, BAUDET B A.The mechanics of fiber-reinforced sand[J]. Géotechnique, 2010, 60(10): 791-799.
    [25]
    TANG C S, SHI B, CAI Y, et al.Experimental study on polypropylene fiber improving soft soils[J]. Rock & Soil Mechanics, 2007, 28(9): 1796-1800.
    [26]
    LI J, TANG C S WANG D Y, et al. Effect of discrete fiber reinforcement on soil tensile strength[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(2): 133-137.
    [27]
    TANG C S, PEI X J, WANG D Y.Interfacial micro-mechanical behavior of discrete fiber-reinforced soil[M]// Soil Behavior and Geomechanics, ZHANG Xiong, CHU Jian, BULUT R, ed. ASCE, 2014.
    [28]
    PRABAKAR J, SRIDHAR R S.Effect of random inclusion of sisal fibre on strengthbehaviour of soil[J]. Construction and Building Material, 2002, 16(2): 123-131.
    [29]
    AKBULUT S, ARASAN S, KALKAN E.Modification of clay soils using scrap tire rubber and synthetic fibers[J]. Applied Clay Science, 2007, 38(1): 23-32.
    [30]
    蔡奕, 施斌, 高玮, 等. 纤维石灰土工程性质的试验研究[J]. 岩土工程学报, 2006, 28(10): 1283-1287.
    (CAI Yi, SHI Bin, GAO Wei, et al.Experimental study on engineering properties of fibre-lime treated soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1283-1287. (in Chinese))
    [31]
    吴继玲, 张小平. 聚丙烯纤维加筋膨胀土强度试验研究[J].土工基础, 2011, 24(6): 71-73.
    (WU Ji-ling, ZHANG Xiao-ping.Study on strength of polypropylene fiber reinforced expansive soil[J]. Soil Engineering and Foundation, 2011, 24(6): 71-73. (in Chinese))
    [32]
    王鹏, 唐朝生, 孙凯强, 等. 纤维加筋市政污泥固结特性试验研究[J]. 工程地质学报, 2015, 23(4): 687-694.
    (WANG Peng, TANG Chao-Sheng, SUN Kai-Qiang, et al.Experimental investigation on consolidation properties of fiber reinforced municipal sludge[J]. Journal of Engineering Geology, 2015, 23(4): 687-694. (in Chinese))
    [33]
    王德银, 唐朝生, 李建, 等. 纤维加筋非饱和黏性土的剪切强度特性[J]. 岩土工程学报, 2013, 35(10): 1933-1940.
    (WANG De-yin, TANG Chang-sheng, LI Jian, et al.Shear strength characteristics of fiber-reinforced unsaturated cohesive soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 35(10): 1933-1940. (in Chinese))
    [34]
    TANG C S, WANG D Y, CUI Y J, et al.Tensile strength of fiber reinforced soil[J]. Journal of Materials in Civil Engineering, 2016, 28(7): 04016031.
    [35]
    LI M, LI L, OGBONNAYA U, et al.Influence of fiber addition on mechanical properties of MICP-Treated sand[J]. Journal of Materials in Civil Engineering, 2016, 28(4): 04015166.
    [36]
    李建, 唐朝生, 王德银, 等. 基于单根纤维拉拔试验的波形纤维加筋土界面强度研究[J]. 岩土工程学报, 2014, 36(9): 1696-1704.
    (LI Jian, TANG Chao-sheng, WANG De-yin, et al.Single fiber pullout tests on interfacial shear strength of wave-shape fiber-reinforced soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 36(9): 1696-1704. (in Chinese))
    [37]
    TANG C S, SHI B, GAO W, et al.Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil[J]. Geotextiles & Geomembranes, 2007, 25(3): 194-202.
    [38]
    TANG Chao-sheng, SHI Bin, ZHAO Li-zheng.Interfacial shear strength of fiber reinforced soil[J]. Geotextiles & Geomembranes, 2010, 28(1): 54-62.
  • Cited by

    Periodical cited type(16)

    1. 刘飞禹,王迪,付冬平. 法向循环荷载下土石混合料-格栅界面剪切特性研究. 防灾减灾工程学报. 2025(02): 458-467 .
    2. 周卫东,陈舒祺,刘飞禹,刘洪波. 不同含水率花岗岩残积土-格栅界面的循环剪切特性. 土木与环境工程学报(中英文). 2025(03): 58-65 .
    3. 孟亚,徐超,贾斌,左彬澧. 含水率和冻融循环对筋土界面剪切特性的影响. 中南大学学报(自然科学版). 2024(02): 586-594 .
    4. 方济升,刘杰,张耀辉,赵阳. 土工格室与沙漠沙界面特性大型直剪试验. 公路交通科技. 2024(06): 65-73 .
    5. 龙英. 加筋土路基力学性能分析研究. 湖南交通科技. 2024(03): 61-65 .
    6. 杨俊超,夏元友,崔飞龙,李丽华,吴炯晖,陈晨,田亮. 循环荷载作用下粉质黏土-混凝土界面强度预测研究. 岩土工程学报. 2024(S2): 194-199 . 本站查看
    7. 徐泽人,刘鹏. 胶粉/SBS复合改性沥青制备工艺室内对比试验研究. 湖南交通科技. 2024(04): 68-71 .
    8. 薛凯仁,夏靖洪,刘开富. 循环荷载下桩网复合地基受力变形模型试验研究. 浙江理工大学学报(自然科学版). 2023(01): 157-166 .
    9. 冯忞,诸兆益,钱振豪. 橡胶颗粒掺量对橡胶黏土剪切特性的影响. 华南地震. 2023(01): 29-36 .
    10. 侯娟,楚辰玺,孙银玉,文平,马艳霞,张吾渝. 法向循环荷载下格栅加筋盐渍土剪切性能研究. 岩石力学与工程学报. 2023(S1): 3832-3841 .
    11. 刘飞禹,李婧婷,应梦杰,童立红. 位移幅值对砾石-格栅界面循环剪切特性的影响. 中国公路学报. 2023(05): 58-64 .
    12. 熊勃,童艳光,何江荟. 不同剪切速率和孔径下立体格栅筋土界面剪切特性. 岩土工程技术. 2023(04): 470-474 .
    13. 刘飞禹,梁崇旭,王军,刘洪波. 含水率和法向循环荷载对残积土剪切特性的影响. 中国公路学报. 2023(08): 172-180 .
    14. 李水江,姚嘉敏,刘飞禹,刘洪波,侯娟. 法向循环荷载下土石混合料-织物界面剪切特性研究. 岩土力学. 2023(11): 3082-3090 .
    15. 王军,朱晨,刘飞禹,孔剑捷,姚嘉敏. 法向循环荷载下筋土界面的剪切应力规律及预测. 岩土工程学报. 2022(05): 954-960 . 本站查看
    16. 左政,杨广庆,王贺,许淋颖,靳静,梁训美. 土工格室规格对加筋土剪切性能的影响. 岩土工程学报. 2022(06): 1053-1060 . 本站查看

    Other cited types(16)

Catalog

    Article views PDF downloads Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return