Citation: | LIANG Jing-yu, DU Xiu-li, LU De-chun, HAN Jia-yue. Fractional-order critical state model for soils in characteristic stress space[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 581-587. DOI: 10.11779/CJGE201903022 |
[1] |
ZHOU H W, WANG C P, HAN B B, et al.A creep constitutive model for salt rock based on fractional derivatives[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(1): 116-121.
|
[2] |
殷德顺, 和成亮, 陈文. 岩土应变硬化指数理论及其分数阶微积分理论基础[J]. 岩土工程学报, 2010, 32(5): 762-766.
(YIN De-shun, HE Cheng-liang, CHEN Wen.Theory of geotechnical strain hardening index and its rationale from fractional order calculus[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 762-766. (in Chinese)) |
[3] |
SMIT W, DE VRIES H.Rheological models containing fractional derivatives[J]. Rheologica Acta, 1970, 9(4): 525-534.
|
[4] |
YIN D S, WU H, CHENG C, et al.Fractional order constitutive model of geomaterials under the?condition of triaxial test[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(8): 961-972.
|
[5] |
SUMELKA W.Fractional viscoplasticity[J]. Mechanics Research Communications. 2014, 56: 31-36.
|
[6] |
SUMELKA W, NOWAK M.Non-normality and induced plastic anisotropy under fractional plastic flow rule: a numerical study[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(5): 651-675.
|
[7] |
SUN Y F, XIAO Y. Fractional order plasticity model for granular soils subjected to monotonic triaxial compression[J]. International Journal of Solids and Structures, 2017, 118/119: 224-234.
|
[8] |
SUN Y F, INDRARATNA B, CARTER J P, et al.Application of fractional calculus in modelling ballast deformation under cyclic loading[J]. Computers and Geotechnics, 2017, 82: 16-30.
|
[9] |
LI X S, DAFALIAS Y F.Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460.
|
[10] |
LU D C, MA C, DU X L, et al.Development of a new nonlinear unified strength theory for geomaterials based on the characteristic stress concept[J]. International Journal of Geomechanics, ASCE, 2017, 17(2): 4016058.
|
[11] |
MA C, LU D C, DU X L, et al.Developing a 3D elastoplastic constitutive model for soils: a new approach based on characteristic stress[J]. Computers and Geotechnics, 2017, 86: 129-140.
|
[12] |
LU D C, LIANG J Y, DU X L, et al.Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule[J]. Comput Geotech, 2019, 105: 277-290.
|
[13] |
路德春, 曹胜涛, 程星磊, 等. 欠固结土的弹塑性本构模型[J]. 土木工程学报, 2010, 43(增刊): 320-326.
(LU De-chun, CAO Sheng-tao, CHENG Xing-lei, et al.An elastoplastic constitutive model for underconsolidated clay[J]. China Civil Engineering Journal, 2010, 43(S0): 320-326. (in Chinese)) |
[14] |
YU H S.CASM: A unified state parameter model for clay and sand[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(8): 621-653.
|
[15] |
NAKAI T, MATSUOKA H.A generalized elastoplastic constitutive model for clay in three-dimensional stresses[J]. Soils and Foundations, 1986, 26(3): 81-98.
|
[16] |
CHOWDHURY E Q, NAKAI T.Consequences of the tij-concept and a new modeling approach[J]. Computers and Geotechnics, 1998, 23(3): 131-164.
|
1. |
赵瑞,代登辉,武广繁,沈凡茗,薛凯. 考虑土塞效应管桩的竖向动力响应解析解. 河南科学. 2025(05): 625-634 .
![]() | |
2. |
刘浩,吴文兵,蒋国盛,梅国雄,梁荣柱,官文杰. 土塞效应对管桩低应变测试视波速的影响研究. 岩土工程学报. 2019(02): 383-389 .
![]() |