• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Dong-yong, CHEN Xi, LÜ Yan-nan, REN Jin-lan. Shear strength reduction finite element method based on second-order cone programming theory and its application[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 457-465. DOI: 10.11779/CJGE201903007
Citation: WANG Dong-yong, CHEN Xi, LÜ Yan-nan, REN Jin-lan. Shear strength reduction finite element method based on second-order cone programming theory and its application[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 457-465. DOI: 10.11779/CJGE201903007

Shear strength reduction finite element method based on second-order cone programming theory and its application

More Information
  • Received Date: March 18, 2018
  • Published Date: March 24, 2019
  • For geotechnical stability problems, the limit equilibrium method (LEM) and shear strength reduction finite element method (SSRFEM) have been commonly used. In the traditional elasto-plastic finite element method, a large maximum allowable number of nonlinear iterations (such as 200 or 500) are often set in the SSRFEM, so that the calculation is generally time-consuming; besides, the equilibrium iteration and stress integration algorithm may probably lead to inaccurate calculation of plastic zone and stability. Based on the Hellinger-Reissner mixed variational principle and finite element method, a new shear strength reduction finite element method is proposed based on the finite element method of second-order cone programming (FEM-SOCP). In the mathematical programming finite element framework, the elasto-plastic finite element problem can be cast into a form of second-order cone programming (SOCP), and when being utilized in conjunction with the strength reduction technique, the resultant approach named SSRFEM-SOCP can be applied to geotechnical stability analysis. When being applied to plane strain problems, it is observed that SSRFEM-SOCP is reliable and efficient, and particularly the plastic zone attained by the SSRFEM-SOCP is generally smoother than that by the conventional SSRFEM method.
  • [1]
    KRAHN J.Stability modeling with SLOPE/W: an engineering methodology[M]. Alberta: GEO-SLOPE/W International Ltd., 2004.
    [2]
    GRIFFITHS D V, LANE P A.Slope stability analysis by finite elements[J]. Géotechnique, 1999, 49(3): 387-403.
    [3]
    连镇营, 韩国城, 孔宪京. 强度折减有限元法研究开挖边坡的稳定性[J]. 岩土工程学报, 2001, 23(4): 406-411.
    (LIAN Zhen-ying, HAN Guo-cheng, KONG Xian-jing.Stability analysis of excavation by strength reduction FEM[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 406-411. (in Chinese))
    [4]
    赵尚毅, 郑颖人, 时卫民, 等. 用有限元强度折减法求边坡稳定安全系数[J]. 岩土工程学报, 2002, 24(3): 343-346.
    (ZHAO Shang-yi, ZHENG Ying-ren, SHI Wei-min, et al.Analysis on safety factor of slope by strength reduction FEM[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(3): 343-346. (in Chinese))
    [5]
    林鸿州, 于玉贞, 李广信, 等. 强度折减有限元法在滑坡特性预测的应用探讨[J]. 岩土工程学报, 2009, 31(2): 229-233.
    (LIN Hong-chou, YU Yu-zhen, LI Guang-xin, et al.Finite element method with consideration shear strength reduction for prediction of landslide[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 229-233. (in Chinese))
    [6]
    陈曦, 张训维, 苗姜龙, 等. 土体剪胀特性对土质边坡体系稳定性的影响[J]. 重庆交通大学学报 (自然科学版), 2017, 36(1): 52-57.
    (CHEN Xi, ZHANG Xun-wei, MIAO Jiang-long, et al.Stability analysis and evaluation of soil slope system considering the shear dilatancy effect[J]. Journal of Chongqing Jiaotong University (Natural Science), 2017, 36(1): 52-57. (in Chinese))
    [7]
    DAVIS E H.Theories of plasticity and failure of soil masses[M]. London: Butterworths, 1968: 341-380.
    [8]
    TSCHUCHNIGG F, SCHWEIGER H F, SLOAN S W.Slope stability analysis by means of finite element limit analysis and finite element strength reduction techniques: part I numerical studies considering non-associated plasticity[J]. Computers and Geotechnics, 2015, 70: 169-177.
    [9]
    陈曦, 刘春杰. 有限元强度折减法中安全系数的搜索算法[J]. 岩土工程学报, 2010, 28(9): 1443-1447.
    (CHEN Xi, LIU Chun-jie.Search algorithms for safety factor in finite element shear strength reduction method[J]. Chinese Journal of Geotechnical Engineering, 2010, 28(9): 1443-1447. (in Chinese))
    [10]
    CHEN X, WU Y, YU Y, et al.A two-grid search scheme for large-scale 3-D finite element analyses of slope stability[J]. Computers and Geotechnics, 2014, 62: 203-215.
    [11]
    CHEN X, JIE Y, LIU J.Robust partitioned block preconditioners for large-scale geotechnical applications with soil-structure interactions[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(1): 72-91.
    [12]
    杨小礼. 线性与非线性破坏准则下岩土极限分析方法及其应用[D]. 长沙: 中南大学, 2002.
    (YANG Xiao-li.Limit analysis method and its application to geotechnical engineering with linear and nonlinear failure criteria[D]. Changsha: Central South University, 2002. (in Chinese))
    [13]
    殷建华, 陈健, 李焯芬. 岩土边坡稳定性的刚体有限元上限分析法[J]. 岩石力学与工程学报, 2004, 23(6): 898-905.
    (YIN Jian-hua, CHEN Jian, LEE C F.Ultimate limit analysis of stability of rock and soil slopes using rigid finite elements[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(6): 898-905. (in Chinese))
    [14]
    WANG D, CHEN X, FAN Q, et al.Comparison of discontinuity layout optimization and finite element optimization for plane plasticity problems[C]// The 15th International Conference of the International Association for Computer Methods and Advances in Geomechanics. Wuhan, 2017.
    [15]
    TANG C, PHOON K K, TOH K C.Lower-bound limit analysis of seismic passive earth pressure on rigid walls[J]. International Journal of Geomechanics, 2014, 14(5): 04014022.
    [16]
    张雪, 盛岱超. 一种模拟土体流动的连续体数值方法[J]. 岩土工程学报, 2016, 38(3): 562-569.
    (ZHANG Xue, SHENG Dai-chao.Continuum approach for modelling soil flow in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 562-569. (in Chinese))
    [17]
    ZHOU T.Stabilized hybrid finite element methods based on the combination of saddle point principles of elasticity problems[J]. Mathematics of Computation, 2003, 72(244): 1655-1673.
    [18]
    KRABBENHØFT K, LYAMIN A V, SLOAN S W. Formulation and solution of some plasticity problems as conic programs[J]. International Journal of Solids and Structures, 2007, 44(5): 1533-1549.
    [19]
    MOSEK A S. The MOSEK C optimizer API manual, version 8.0[OL]. http://docs.mosek.com/8.0/capi/index.html, 2016- 12-25.
    [20]
    DONALD I B, GIAM P S K. The ACADS Slope Stability Programs Review[C]// 6th International Symposium on Landslides. Christchurch, 1992.
    [21]
    DONALD I B, GIAM P S K. Soil slope stability programs review[C]// ACADS Publication No. U255. Melbourne, 1989.
  • Cited by

    Periodical cited type(4)

    1. 常洲,晏长根,安宁,兰恒星,石玉玲,包含,许江波. 干湿循环作用下原状黄土渗透性及其对土-水特征曲线的影响. 长江科学院院报. 2024(01): 143-150+166 .
    2. 梁志超,张爱军,任文渊,王毓国,胡锦方,韩婧文. 石灰改良黄土土水特征拟合模型及微观特性. 岩土工程学报. 2022(S1): 241-246 . 本站查看
    3. 左炳昕,查元源. 基于机器学习方法的土壤转换函数模型比较. 灌溉排水学报. 2021(05): 81-87 .
    4. 叶云雪,邹维列,韩仲,谢鹏,张俊峰,徐永福. 考虑初始状态影响的膨胀土一维膨胀特性研究. 岩土工程学报. 2021(08): 1518-1525 . 本站查看

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return