• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HUANG Da, ZHANG Yong-fa, ZHU Tan-tan, CHEN Hong-kai. Experimental study on tension-shear mechanical behavior of sandstone[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 272-276. DOI: 10.11779/CJGE201902004
Citation: HUANG Da, ZHANG Yong-fa, ZHU Tan-tan, CHEN Hong-kai. Experimental study on tension-shear mechanical behavior of sandstone[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 272-276. DOI: 10.11779/CJGE201902004

Experimental study on tension-shear mechanical behavior of sandstone

More Information
  • Received Date: December 20, 2017
  • Published Date: February 24, 2019
  • Rock excavation and river incision result in stress unloading in one or more directions, which leads to the redistribution of stress fields of rock masses in the influenced zone. The rock masses in the unloading zone commonly bear tension-shear stress, making the failure of unloading rocks exhibit obvious tensile property. However, due to the limitation of test technology, it is still quite difficult to study the shear mechanical behavior of rock under the action of normal tensile stress. In this study, a tension double-shear test auxiliary device that can be used by conventional direct shear testing machine is designed to convert the normal compressive force to the tensile one. The direct shear tests on sandstone under tensile normal stress are carried out using this device. The results show that under the tension-shear stress, the curves of shear stress versus shear displacement before peak stress only show two deformation stages of initial nonlinear deformation and linear deformation (namely without yield stage before peak). The shear strength and shear stiffness of sandstone gradually decrease with the increase of the normal tensile stress. Compared with the Mohr-Coulomb criterion, the Hoek-Brown criterion is better in describing the strength characteristics of sandstone under tensile shear stress. Besides, as the normal tensile stress increases, the rupture surface of rock specimen has more obvious tension and is straighter in shape.
  • [1]
    张倬元, 王仕天, 王兰生, 等. 工程地质分析原理[M]. 北京: 地质出版社, 2009.
    (ZHANG Zhuo-yuan, WANG Shi-tian, WANG Lan-sheng, et al.Principles of engineering geology[M]. Beijing: Geological Publishing House, 2009. (in Chinese))
    [2]
    HUANG R Q, HUANG D.Evolution of rock cracks under unloading condition[J]. Rock mechanics and Rock Engineering, 2014, 47(2): 453-466.
    [3]
    ETHERIDGE M A.Differential stress magnitudes during regional deformation and metamorphism: upper bound imposed by tensile fracturing[J]. Geology, 1983, 11(4): 231-234.
    [4]
    黄润秋, 黄达, 段绍辉, 等. 锦屏Ⅰ级水电站地下厂房施工期围岩变形开裂特征及地质力学机制研究[J]. 岩石力学与工程学报, 2011, 30(1): 23-35.
    (HUANG Run-qiu, HUANG Da, DUAN Shao-hui, et al.Geomechanics mechanism and characteristics of surrounding rock mass deformation failure in construction phase for underground powerhouse of Jinping Ⅰ hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering,(in Chinese))
    [5]
    赵宝云, 刘东燕, 朱可善, 等. 重庆红砂岩单轴直接拉伸蠕变特性试验研究[J]. 岩石力学与工程学报, 2011, 30(增刊2): 3960-3965.
    (ZHAO Bao-yun, LIU Dong-yan, ZHU Ke-shan, et al.Experimental research on creep characteristics of Chongqing red sandstone under direct tension[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S2): 3960-3965. (in Chinese))
    [6]
    许江, 刘婧, 吴慧, 等.压剪应力条件下砂岩开裂扩展过程的试验研究[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3042-3048.
    (XU Jiang, LIU Jing, WU Hui, et al.Test study of sandstone cracking and propagation process under compressive-shear stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3042-3048. (in Chinese))
    [7]
    李建林. 岩石拉剪流变特性的试验研究[J]. 岩土工程学报, 2000, 22(3): 299-303.
    (LI Jian-lin.A test study on tension shear creep of rock[J]. Chinses Journal of Geotechnical Engineering, 2000, 22(3): 299-303. (in Chinese))
    [8]
    RAMSEY J M, CHESTER F M.Hybrid fracture and the transition from extension fracture to shear fracture[J]. Nature, 2004, 428(6978): 63.
    [9]
    周辉, 卢景景, 徐荣超, 等. 硬脆性大理岩拉剪破坏特征与屈服准则研究[J]. 岩土力学, 2016, 37(2): 305-314.
    (ZHOU Hui, LU Jing-jing, XU Rong-chao, et al.Research on tension-shear failure characteristics and yield criterion of hard brittle marble[J]. Rock and Soil Mechanics, 2016, 37(2): 305-314. (in Chinese))
    [10]
    CEN D, HUANG D.Direct shear tests of sandstone under constant normal tensile stress condition using a simple auxiliary device[J]. Rock Mechanics & Rock Engineering, 2017, 50(6): 1425-1438.
    [11]
    李守定, 李晓, 郭静芸, 等. 岩石拉伸剪切破裂试验研究[J]. 工程地质学报, 2014, 22(4): 655-666.
    (LI Shou-ding, LI Xiao, GUO Jing-yun, et al.Research of rock failure testing under combined shear and tension[J]. Journal of Engineering Geology, 2014, 22(4): 655-666. (in Chinese))
    [12]
    许江, 刘婧, 程立朝, 等. 压剪应力条件下砂岩双面剪切细观开裂扩展演化特性试验研究[J]. 岩石力学与工程学报, 2014, 33(4): 649-657.
    (XU Jiang, LIU Jing, CHEN Li-chao, et al.Mesoscopic cracking and expansion of double sheared sandstone under compressive-shear stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(4):649-657. (in Chinese))
    [13]
    YANG X L, YIN J H.Upper bound solution for ultimate bearing capacity with a modified Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics & Mining Sciences, 2005, 42(4): 550-560.
    [14]
    GALINDO R A, SERRANO A, OLALLA C.Ultimate bearing capacity of rock masses based on modified Mohr-Coulomb strength criterion[J]. International Journal of Rock Mechanics & Mining Sciences, 2017, 93: 215-225.
    [15]
    HOEK E, BROWN E T.Empirical strength criterion for rock masses[J]. Journal of the Geotechnical Engineering Division, 1980, 106: 1013-1035.
    [16]
    周辉, 李震, 杨艳霜, 等. 岩石统一能量屈服准则[J].岩石力学与工程学报, 2013, 32(11): 2170-2184.
    (ZHOU Hui, LI Zhen, YANG Yan-shuang, et al.Unified energy yield criterion of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11): 2170-2184. (in Chinese))
  • Cited by

    Periodical cited type(24)

    1. 罗庆斐,袁松,袁飞云,周道良,王峥峥. 不同转向角度曲线隧道穿越走滑断层力学行为. 大连理工大学学报. 2025(02): 171-180 .
    2. 吴斌,袁松,康泽洲,罗庆斐,王峥峥. 地震和断层错动共同作用下大转向曲线隧道力学行为研究. 震灾防御技术. 2025(01): 153-162 .
    3. 张恒,徐龙军,彭龙强,谢礼立. 跨断层铁路隧道精细化建模与力学分析. 地震工程与工程振动. 2024(05): 1-12 .
    4. 袁松,王希宝,袁飞云,罗庆斐,肖锋,王峥峥. 不同类型断层错动下半圆形曲线隧道力学行为. 公路. 2024(12): 440-449 .
    5. 韩俊艳,赵文乐,帅义,侯本伟,郭富强,杜修力. 逆断层作用下局部腐蚀埋地管道的失效模式研究. 防灾减灾工程学报. 2024(06): 1386-1397 .
    6. 王综仕,韩现民,徐孟起,王为鑫. 断层错动-地震不同时序作用对隧道的影响研究. 石家庄铁道大学学报(自然科学版). 2024(04): 45-50+124 .
    7. 付艳斌,王福道,陈湘生,陆岸典,沈翔,李旭辉,王贝凌,洪成雨. 破碎带地层盾构隧道建造关键问题. 铁道标准设计. 2023(01): 25-33 .
    8. 章玉伟,徐泽鑫,谢远,邱军领,杨桃,谢永利. 断层破碎带隧道围岩敏感性及沉降控制分析. 科学技术与工程. 2023(08): 3493-3501 .
    9. 张玉芳,袁坤,周文皎,范家玮. 门源地震对跨冷龙岭断层的大梁隧道结构变形特征和地表裂缝分布规律研究. 岩石力学与工程学报. 2023(05): 1055-1069 .
    10. 陈斌辉. 跨活断层公路隧道损伤规律研究. 河南科技. 2023(10): 59-62 .
    11. 肖文斌,谢印标,郑扬,武科,陈榕,李秋雷,程睿哲. 活动断层下城市地铁隧道变形破坏与损伤. 山东大学学报(工学版). 2023(03): 1-13 .
    12. 王志岗,陶连金,石城,安韶. 逆断层错动作用下考虑柔性接头的综合管廊结构力学行为研究. 铁道科学与工程学报. 2023(06): 2256-2267 .
    13. 刘汉东,赵亚文,杨长林,徐红超,李冬冬. 穿越活断层倒虹吸结构变形影响敏感性研究. 华北水利水电大学学报(自然科学版). 2023(03): 81-88 .
    14. 张卜,姬若愚,钟紫蓝,许成顺,杜修力. 穿越岩土交界面竖井结构水平地震损伤破坏模式. 隧道与地下工程灾害防治. 2023(03): 27-40 .
    15. 史新伟,冯新,范哲. 逆断层作用下复合衬砌输水隧洞损伤演化分析. 防灾减灾工程学报. 2023(05): 1132-1140 .
    16. 周光新,盛谦,崔臻,王天强,马亚丽娜,付兴伟. 走滑断层错动影响下跨活断层铰接隧洞破坏机制模型试验. 岩土力学. 2022(01): 37-50 .
    17. 董航凯. 断裂作用对输水管道的影响效应研究. 水利与建筑工程学报. 2022(02): 66-71 .
    18. 崔臻,盛谦,李建贺,付兴伟. 蠕滑错断-强震时序作用下跨活断裂隧道变形破坏机制初步研究. 岩土力学. 2022(05): 1364-1373 .
    19. 王杰,盛俭,赵梦丹,王欣宇. 康西瓦断裂错动对近断层隧道影响的数值模拟分析. 地震工程与工程振动. 2022(03): 235-242 .
    20. 李翔,孙文昊,孙州,陈立保. 盾构法隧道穿越活动断裂带方案探讨. 隧道建设(中英文). 2022(S1): 369-375 .
    21. 姜久纯. 黏滑错动下地铁隧道结构破坏特征及设防措施. 西安科技大学学报. 2021(03): 474-480 .
    22. 王鸿儒,钟紫蓝,赵密,汪振,赵旭,杜修力. 走滑断层黏滑错动下隧道破坏的模型试验研究. 北京工业大学学报. 2021(07): 691-701 .
    23. 陈立保,孙文昊,孙州,武哲书. 胶州湾第二海底隧道跨断裂带抗错方案研究. 铁道标准设计. 2021(10): 116-122+166 .
    24. 王杰,盛俭,赵梦丹,王欣宇. 断层错动对隧道工程影响研究的若干进展. 防灾科技学院学报. 2021(04): 34-42 .

    Other cited types(26)

Catalog

    Article views PDF downloads Cited by(50)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return