• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
KONG Xian-jing, NING Fan-wei, LIU Jing-mao, ZOU De-gao, ZHOU Chen-guang. Scale effect of rockfill materials using super-large triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 255-261. DOI: 10.11779/CJGE201902002
Citation: KONG Xian-jing, NING Fan-wei, LIU Jing-mao, ZOU De-gao, ZHOU Chen-guang. Scale effect of rockfill materials using super-large triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 255-261. DOI: 10.11779/CJGE201902002

Scale effect of rockfill materials using super-large triaxial tests

More Information
  • Received Date: January 16, 2018
  • Published Date: February 24, 2019
  • A super-large triaxial apparatus and a common large triaxial apparatus are used to conduct triaxial tests on quarried rockfill materials with the maximum particle size dmax of 200 and 60 mm in parallel gradation. The study mainly focuses on the effect of particle size on the stress-strain relation, particle breakage, characteristic stress state and parameters of Duncan-Chang model. The results show that the peak friction angle of dmax=60 mm is higher than that of the dmax=200 mm, and the axial stain at the peak strength of dmax=60mm is smaller than that at dmax=200 mm. The phase transformation stress ratio of dmax=60 mm is higher than that at dmax=200 mm, and the volumetric and axial strains in phase transformation state are smaller than those at dmax=200 mm. The amount of particle breakage of dmax=200 mm is greater than that at dmax=60 mm. The secant elastic and bulk moduli at 50% stress level of dmax=60 mm are larger than those at dmax=200 mm. The parameters k and kb of Duncan-Chang model for dmax=60 mm are 1.22 and 1.38 times those for dmax=200 mm, respectively. This study may provide valuable experimental references for the constitutive model considering scale effect and the deformation analysis for rockfill structures.
  • [1]
    MARSAL R J.Large scale testing of rockfill materials[J]. Journal of the Soil Mechanics & Foundations Division, 1967, 93(2): 27-43.
    [2]
    MARACHI N D, CHAN C K, SEED H B.Evaluation of properties of rockfill materials[J]. Journal of Soil Mechanics & Foundations Div, 1972, 98(1): 95-114.
    [3]
    李凤鸣, 卞富宗. 两种粗粒土的比较试验[J]. 勘察科学技术, 1991(2): 25-29.
    (LI Feng-ming, BIAN Fu-zong.Comparison of two rockfill tests[J]. Site Investigation Science and Technology, 1991(2): 25-29. (in Chinese))
    [4]
    王继庄. 粗粒料的变形特性和缩尺效应[J]. 岩土工程学报, 1994, 16(4): 89-95.
    (WANG Ji-zhuang.Deformation characteristic and scale effect of rockfiil material[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(4): 89-95. (in Chinese))
    [5]
    郦能惠, 朱铁, 米占宽. 小浪底坝过渡料的强度与变形特性及缩尺效应[J]. 水电能源科学, 2001, 19(2): 39-42.
    (LI Neng-hui, ZHU Tie, MI Zhan-kuan.Strength and deformation properties of transition zone material of Xiaolangdi Dam and scale effect[J]. International Journal Hydroelectric Energy, 2001, 19(2): 39-42. (in Chinese))
    [6]
    VARADARAJAN A, SHARMA K G, VENKATACHALAM K, et al.Testing and modeling two rockfill materials[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2003, 129(3): 206-218.
    [7]
    李翀, 何昌荣, 王琛, 等. 粗粒料大型三轴试验的尺寸效应研究[J]. 岩土力学, 2008, 29(增刊1): 563-566.
    (LI Chong, HE Chang-rong, WANG Chen, et al.Study of scale effect of large-scale triaxial test of coarse-grained materials[J]. Rock and Soil Mechanics, 2008, 29(S1): 563-566. (in Chinese))
    [8]
    HU W, DANO C, HICHER P, et al.Effect of sample size on the behavior of granular materials[J]. Geotechnical Testing Journal, 2011, 34(3): 186-197.
    [9]
    凌华, 殷宗泽, 朱俊高, 等. 堆石料强度的缩尺效应试验研究[J]. 河海大学学报(自然科学版), 2011, 39(5): 540-544.
    (LING Hua, YIN Zong-ze, ZHU Jun-gao, et al.Experimental study of scale effect on strength of rockfill materials[J]. Journal of Hohai University (Natural Sciences), 2011, 39(5): 540-544. (in Chinese))
    [10]
    HONKANADAVAR P N, L GUPTA S. Effect of particle size and confining pressure on shear strength parameter of rockfill materials[J]. Academic Research, 2012, 1(1): 49-63.
    [11]
    邹德高, 田继荣, 刘京茂, 等. 堆石料三维形状量化及其对颗粒破碎的影响研究[J]. 岩土力学, 2018, 39(10): 3525-3530.
    (ZOU De-gao, TIAN Ji-rong, LIU Jing-mao, et al.Three-dimensional shape of rockfill material and its influence on particle breakage[J]. Rock and Soil Mechanics, 2018, 39(10): 3525-3530. (in Chinese))
    [12]
    福島伸二, 北島明. 超大型三軸圧縮試験装置の歩みとその果たした役割[J]. 土と基礎, 1998, 46(11): 29-32.
    (FUKUSHIMA S, KITAJIMA A.History and contribution of super large scale triaxial compression testing apparatus[J]. Soil Mechanics and Foundation Engineering, 1998, 46(11): 29-32. (in Japanese))
    [13]
    孔宪京, 刘京茂, 邹德高. 堆石料尺寸效应研究面临的问题及多尺度三轴试验平台[J]. 岩土工程学报, 2016, 38(11): 1941-1947.
    (KONG Xian-jing, LIU Jing-mao, ZOU De-gao.Scale effect of rockfill and multiple-scale triaxial test platform[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1941-1947. (in Chinese))
    [14]
    SL237—1999土工试验规程[M]. 1999. (SL237—1999 Specification of soil test[S]. 1999. (in Chinese))
    [15]
    GOTO S, TATSUOKA, SHIBUYA S, et al.A simple gauge for local small strain measurements in the laboratory[J]. Soils & Foundations, 1991, 31(1): 169-180.
    [16]
    孔宪京, 贾革续, 邹德高, 等. 微小应变下堆石料的变形特性[J]. 岩土工程学报, 2001, 23(1): 32-37.
    (KONG Xian-jing, JIA Ge-xu, ZOU De-gao, et al.Deformation characteristics of rockfill at small strains[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 32-37. (in Chinese))
    [17]
    孔宪京, 刘京茂, 邹德高, 等. 紫坪铺面板坝堆石料颗粒破碎试验研究[J]. 岩土力学, 2014, 35(1): 35-40.
    (KONG Xian-jing, LIU Jing-mao, ZOU De-gao, et al.Experimental study of particle breakage of Zipingpu rockfill material[J]. Rock and Soil Mechanics, 2014, 35(1): 35-40. (in Chinese))
    [18]
    LIU J, ZOU D.Stress-dilatancy of Zipingpu gravel in triaxial compression tests[J]. Science China (Technological Sciences), 2016, 59(2): 214-224.
    [19]
    KONG X, LIU J, ZOU D, et al.Stress-dilatancy relationship of Zipingpu gravel under cyclic loading in triaxial stress states[J]. International Journal of Geomechanics, 2016, 16(4): 4016001.
  • Cited by

    Periodical cited type(15)

    1. 苗秋福. 高水平应力环境下层状岩体隧道稳定性分析. 公路交通科技. 2025(02): 196-206 .
    2. 秦哲,刘文龙,武发宇,韩继欢,李为腾,冯强,刘永德. 考虑层叠拱传递效应的浅埋硬岩隧道支护力研究及应用. 岩石力学与工程学报. 2024(09): 2165-2177 .
    3. 李元海,赵万勇,朱茂国,刘德柱,于恒. 软弱缓倾层状岩层隧道围岩结构变形与失稳机制试验研究. 采矿与安全工程学报. 2024(06): 1148-1157 .
    4. 申志福,徐琪尔,朱玲裕,王志华,高洪梅. 人工制备互层土的静三轴剪切力学特性研究. 岩土工程学报. 2023(04): 840-846 . 本站查看
    5. 赵雪,顾伟红. 基于人工蜂群优化支持向量机回归的隧道塌方风险预测. 科学技术与工程. 2023(09): 3997-4003 .
    6. 严志军. 公路隧道项目施工塌方成因及防控探讨. 交通科技与管理. 2023(09): 135-137 .
    7. 武靖勋. 某铁路隧道塌方综合处治技术. 国防交通工程与技术. 2023(05): 65-67+50 .
    8. 苗景川,肖鹏帅,洪富义,陈诺,李文杰,梁斌. 大凉山深埋软弱围岩公路隧道塌方机理及处治措施. 科学技术与工程. 2023(30): 13143-13149 .
    9. 李向峰. 软弱千枚岩塌方施工处理技术研究. 运输经理世界. 2022(15): 110-112 .
    10. 阮小勇,张佳. 顺层偏压隧道围岩破坏规律研究及施工控制技术. 科学技术创新. 2022(31): 158-161 .
    11. 耿启军. 富水全风化红砂岩地层隧道涌水涌砂机理及防治. 铁道建筑技术. 2022(12): 164-169 .
    12. 李荣锦,邹鑫,李荣建,林国强,白维仕,张瑾. 半嵌泥岩半覆黄土隧道模型试验及承载特性评价. 岩土工程学报. 2022(S1): 98-103 . 本站查看
    13. 王志杰,邱志洪,蔡李斌,张曾照,马兆飞,夏勇,徐海岩. 浩吉铁路阳城隧道全风化红砂岩围岩变形规律. 铁道建筑. 2021(09): 58-62 .
    14. 申志福,徐琪尔,朱玲裕,王志华,高洪梅. 重塑粉质黏土与粉砂互层土试样制备方法. 岩土工程学报. 2021(S2): 96-99 . 本站查看
    15. 王志杰,蔡李斌,邱志洪,芮小豪,马兆飞,程宏生,张曾照,徐海岩. 土砂互层隧道大变形控制技术研究——以浩吉铁路阳城隧道为例. 隧道建设(中英文). 2021(S2): 469-478 .

    Other cited types(22)

Catalog

    Article views PDF downloads Cited by(37)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return