• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
GUO Xing-sen, NIAN Ting-kai, FAN Ning, JIAO Hou-bin, JIA Yong-gang. Rheological tests and model for submarine mud flows in South China Sea under low temperatures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 161-167. DOI: 10.11779/CJGE201901018
Citation: GUO Xing-sen, NIAN Ting-kai, FAN Ning, JIAO Hou-bin, JIA Yong-gang. Rheological tests and model for submarine mud flows in South China Sea under low temperatures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 161-167. DOI: 10.11779/CJGE201901018

Rheological tests and model for submarine mud flows in South China Sea under low temperatures

More Information
  • Received Date: October 15, 2017
  • Published Date: January 24, 2019
  • The submarine mud flow, a fluidized landslide mass developed from the unstable submarine slope, is easy to cause a serious damage to the offshore engineering facilities. At present, there are rarely researches to discuss the rheological properties of this mud flow, particularly lacking of its characteristic studies considering the low temperatures around the seafloor. For this purpose, the mud flow is prepared by using undisturbed soft clay samped from the South China Sea, and many rheological tests under different temperatures and water contents are conducted by the RST rheometer. Then, the Herschel-Bulkley model is introduced to analyze the rheological parameters, and the integrated rheological model for the submarine mud flow is proposed. Further, the rheological characteristics and mechanisms of the submarine mud flow are analyzed by the phase transformation, the Brownian motion and the interparticle interaction. The research results show that the shear stress and apparent viscosity of the mud flow under the low temperatures significantly increase as compared with those under the room temperature, and this change percentage will further rise with the increase of the shear strain rate, and the average value of the change is more than 35%. This study may provide a scientific basis for the numerical simulation of submarine mud flows and the prediction of landslide hazards.
  • [1]
    MOSHER D C, MOSCARDELLI L, SHIPP R C, et al.Submarine mass movements and their consequences[J]. Advances in Natural & Technological Hazards Research, 2010, 41(3): 1-12.
    [2]
    王立忠, 缪成章. 慢速滑动泥流对海底管道的作用力研究[J]. 岩土工程学报, 2008, 30(7): 982-987.
    (WANG Li-zhong, MIAO Cheng-zhang.Pressure on submarine pipelines under slowly sliding mud flows[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(7): 982-987. (in Chinese))
    [3]
    CANALS M, LASTRAS G, URGELES R, et al.Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: case studies from the COSTA project[J]. Marine Geology, 2004, 213(1): 9-72.
    [4]
    胡光海, 刘忠臣, 孙永福, 等. 海底斜坡土体失稳的研究进展[J]. 海岸工程, 2004, 23(1): 63-72.
    (HU Guang-hai, LIU Zhong-chen, SUN Yong-fu, et al.Advances in the research on sediment failure on submarine slope[J]. Coastal Engineering, 2004, 23(1): 63-72. (in Chinese))
    [5]
    叶国良, 郭述军, 朱耀庭. 超软土的工程性质分析[J]. 中国港湾建设, 2010(5): 1-9.
    (YE Guo-liang, GUO Shu-jun, ZHU Yao-ting.Analysis of engineering properties of super soft soil[J]. China Harbor Construction, 2010(5): 1-9. (in Chinese))
    [6]
    BOUKPETI N, WHITE D J, RANDOLPH M F, et al.Strength of fine-grained soils at the solid-fluid transition[J]. Géotechnique, 2012, 62(3): 213-226.
    [7]
    BERLAMONT J, OCKENDEN M, TOORMAN E, et al.The characterisation of cohesive sediment properties[J]. Coastal Engineering, 1993, 21(1/2/3): 105-128.
    [8]
    COUSSOT P, PIAU J M.On the behavior of fine mud suspensions[J]. Rheologica Acta, 1994, 33(3): 175-184.
    [9]
    王裕宜, 詹钱登, 严璧玉. 泥石流体的流变特性与运移特征[M]. 长沙: 湖南科学技术出版社, 2014.
    (WANG Yu-yi, ZHAN Qian-deng, YAN Bi-yu.Debris-flow rheology and movement[M]. Changsha: Hunan Science and Technology Press, 2014. (in Chinese))
    [10]
    SI G.Experimental study of the rheology of fine-grained slurries and some numerical simulations of downslope slurry movements[D]. Oslo: University of Oslo, 2007.
    [11]
    ZAKERI A, HØEG K, NADIM F. Submarine debris flow impact on pipelines part I: experimental investigation[J]. Coastal Engineering, 2008, 55(12): 1209-1218.
    [12]
    李亚敏, 罗贤虎, 徐行, 等. 南海北部陆坡深水区的海底原位热流测量[J]. 地球物理学报, 2010, 53(9): 2161-2170.
    (LI Ya-min, LUO Xian-hu, XU Xing, et al.Seafloor in-situ heat flow measurements in the deep-water area of the northern South China Sea[J]. Chinese Journal of Geophysics, 2010, 53(9): 2161-2170. (in Chinese))
    [13]
    邹大鹏, 卢博, 阎贫, 等. 南海北部海底沉积物在温度变化下的三种声速类型[J]. 地球物理学报, 2012, 55(3): 1017-1024.
    (ZOU Da-peng, LU Bo, YAN Pin, et al.Three types of sound velocity of seafloor sediments in the northern South China Sea under temperature variations[J]. Acta phys Sinica, 2012, 55(3): 1017-1024. (in Chinese))
    [14]
    BARNES H A, NGUYEN Q D.Rotating vane rheometry: a review[J]. Journal of Non-Newtonian Fluid Mechanics, 2001, 98(1): 1-14.
    [15]
    SANTOLO A S D, PELLEGRINO A M, EVANGELISTA A. Experimental study on the rheological behaviour of debris flow[J]. Natural Hazards & Earth System Science, 2010, 10(12): 2507-2514.
    [16]
    鲁双, 范宁, 年廷凯, 等. 基于流变仪测试超软土强度的试验方法[J]. 岩土工程学报, 2017, 39(增刊1): 91-95.
    (LU Shuang, FAN Ning, NIAN Ting-kai, et al.Test method for testing strength of super soft soil based on rheometer[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 91-95. (in Chinese))
    [17]
    BOUKPETI N, WHITE D J, RANDOLPH M F.Analytical modelling of the steady flow of a submarine slide and consequent loading on a pipeline[J]. Géotechnique, 2012, 62(2): 137-146.
    [18]
    寇养琦. 南海北部大陆边缘海底滑坡的初步研究[J]. 南海地质研究, 1993(5): 43-56.
    (KOU Yang-qi.Preliminary study on submarine landslide from northern continental of South China sea[J]. Geological Research of South China Sea, 1993(5): 43-56. (in Chinese))
    [19]
    EINSELE G.Deep-reaching liquefaction potential of marine slope sediments as a prerequisite for gravity mass flows? (Results from the DSDP)[J]. Marine Geology, 1990, 91(4): 267-279.
    [20]
    李宏伟, 王立忠, 国振, 等. 海底泥流冲击悬跨管道拖曳力系数分析[J]. 海洋工程, 2015, 33(6): 10-19.
    (LI Hong-wei, WANG Li-zhong, GUO Zhen, et al.Drag force of submarine landslides mudflow impacting on a suspended pipeline[J]. Ocean Engineering, 2015, 33(6): 10-19. (in Chinese))
    [21]
    杨闻宇. 剪切载荷作用下高浓度黏性泥沙流变特性的实验研究[D]. 上海: 上海交通大学, 2014.
    (YANG Wen-yu.Experimental study on rheological behavior of high viscosity cohesive sediment under shear load[D]. Shanghai: Shanghai Jiao Tong University, 2014. (in Chinese))
    [22]
    王裕宜, 詹钱登, 韩文亮, 等. 黏性泥石流体的应力应变特性和流速参数的确定[J]. 中国地质灾害与防治学报, 2003, 14(1): 9-13.
    (WANG Yu-yi, ZHAN Qian-deng, HAN Wen-liang, et al.Viscous debris flow stress strain characteristics and velocity parameters of geological disasters and prevention of[J]. China Sinica, 2003, 14(1): 9-13. (in Chinese))
    [23]
    DAVISON J M, CLARY S, SAASEN A, et al.Rheology of various drilling fluid systems under deepwater drilling conditions and the importance of accurate predictions of downhole fluid hydraulics[C]// SPE Annual Technical Conference and Exhibition. SPE, 1999.
    [24]
    费祥俊, 康志成. 细颗粒浆体、泥石流浆体对泥石流运动的作用[J]. 山地学报, 1991, 9(3): 143-152.
    (FEI Xiang-jun, KANG Zhi-cheng.Effects of fine-grained slurry and debris flow on debris flow movement[J]. Journal of the Mountain, 1991, 9(3): 143-152. (in Chinese))
    [25]
    MAJOR J J, PIERSON T C.Debris flow rheology: Experimental analysis of fine-grained slurries[J]. Water Resources Research, 1992, 28(3): 841-857.
    [26]
    陈育民, 高星, 刘汉龙. 砂土液化流动变形的简化方法[J]. 岩土力学, 2013, 34(6): 1567-1573.
    (CHEN Yu-min, GAO Xing, LIU Han-long.Simplified method for flow deformation of sand liquefaction[J]. Rock and Soil Mechanics, 2013, 34(6): 1567-1573. (in Chinese))
  • Cited by

    Periodical cited type(9)

    1. 梁喜凤,史延楠,秦叶波,姚莹,张慧,王永维. 不同含水率与静置时间下滩涂土壤流变特性试验. 农业工程学报. 2024(01): 182-190 .
    2. 陈涛. 充分利用海洋环境提升声呐装备性能的研究. 数字海洋与水下攻防. 2024(02): 156-163 .
    3. 张少雄,宋涛,郝鑫平,张力霆,陈剑刚. 赤泥浆体流变特性和流变模型适用性研究. 三峡大学学报(自然科学版). 2023(01): 48-53 .
    4. 梁志超,张爱军,任文渊,胡海军,王毓国,李双村. 不同含水率高易溶盐含量的伊犁黄土流变特性. 农业工程学报. 2023(05): 90-99 .
    5. 刘杰锋,李飒,段贵娟,王奕霖. 稳态剪切条件下中国南海软黏土的相态转变特性及流变模型. 岩土力学. 2023(S1): 341-349 .
    6. 张博珊,王辉,陈熹. 一种考虑固相浓度作用的改进泥浆流变模型. 土木工程学报. 2023(S1): 134-141 .
    7. 李家平,朱克超,周旋,陈衍力,李昱洋,马雯波. 深海富稀土沉积物的流变特性研究. 岩土力学. 2022(S1): 348-356 .
    8. 刘晓磊,陈安铎,张红,陆杨,马路宽,贾永刚. 黄河水下三角洲高浓度黏性泥沙流变特性及其影响因素. 海洋学报. 2021(05): 127-134 .
    9. 程升,朱超祁,单红仙,刘晓磊,贾永刚. 基于离散元的南海软黏土剪切变形模拟. 科学技术与工程. 2020(09): 3707-3714 .

    Other cited types(10)

Catalog

    Article views (322) PDF downloads (164) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return