• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
Citation: HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013

Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer

More Information
  • Received Date: November 06, 2017
  • Published Date: January 24, 2019
  • The natural montmorillonite is modified by the ionic soil stabilizer (ISS) with different concentrations and the isothermal water vapor adsorption tests are conducted for both the raw and modified soils under the relative humidity (P/P0) ranging from 0.01 to 0.95. The evolution of the dominated factors in the process of hydration of montmorillonite is interpreted by combining the analyses of variation of d001 with P/P0, water retention velocity curves and results of infrared spectroscopy (IR). Finally, the boundary values of P/P0 in hydration sequences are proposed, and the water retention equations are derived through hydration energy of cations and surface of minerals, respectively. The results show that for the calcium montmorillonite, the exchangeable cations interact with water molecules to form monolayer of hydration shell at the range of 0<P/P0<0.15~0.2 firstly and then form bilayer at 0.15~0.2<P/P0<0.45~0.5, followed by hydration on basal surface of crystal layer at 0.45~0.5<P/P0<0.8~0.9 to form the integrated bilayer water film. The water retention capacity is dominated by the hydratability of interlamellar cations merely at extremely high suction range (ψ>200 MPa), and mainly influenced by the Van der Waals force between basal surface and water molecules when suction is lower (15<ψ<200 MPa). At a certain suction range, ISS weakens the water retention capacity of montmorillonite by changing the specific physic-chemical parameters. The derived water retention equations can accurately predict the test results and also provide a quantitative insight into the mechanism of action by ISS.
  • [1]
    HENSEN E J M, SMIT B. Why clays swell[J]. Journal of Physical Chemistry B, 2002, 106(49): 12664-12667.
    [2]
    贾景超. 膨胀土膨胀机理及细观膨胀模型研究[D]. 大连: 大连理工大学, 2010.
    (JIA Jing-chao.Study on the swelling mechanism and mesomechanical swelling model of expansive soil[D]. Dalian: Dalian University of Technology, 2010. (in Chinese))
    [3]
    DEVINEAU K, BIHANNIC I, MICHOT L, et al.In situ neutron diffraction analysis of the influence of geometric confinement on crystalline swelling of montmorillonite[J]. Applied Clay Science, 2006, 31(1/2): 76-84.
    [4]
    LAIRD D A.Influence of layer charge on swelling of smectites[J]. Applied Clay Science, 2006, 34(1/2/3/4): 74-87.
    [5]
    FABRICE S, OLIVIER B, JEANMARC D, et al.Determination of the driving force for the hydration of the swelling clays from computation of the hydration energy of the interlayer cations and the clay layer[J]. J Phys Chem C, 2008, 111(35): 13170-13176.
    [6]
    KELLEY W P, JENNY H, BROWN S M.Hydration of minerals and soil colloids in relation to crystal structure[J]. Soil Science, 1936, 41(4): 259-274.
    [7]
    库里契茨基. 土中结合水译文集[M]. 李生林, 译. 北京: 地质出版社, 1982.
    (CURRYCHISIKI. The soil bound water[M]. LI Sheng-lin, tran. Beijing: Geological Press, 1982. (in Chinese))
    [8]
    王平全. 黏土表面结合水定量分析及水合机制研究[D].成都: 西南石油学院, 2001.
    (WANG Ping-quan.The study for quantitative analysis of water on clays and their hydration mechanism[D]. Chengdu: Southwest Petroleum Institute, 2001. (in Chinese))
    [9]
    CASES J M, BEREND I, BESSON G, et al.Mechanism of adsorption and desorption of water vapor by homoionic montmorillonit 1: the sodium-exchanged form[J]. Langmuir, 1992, 8(11): 2730-2739.
    [10]
    CASES J M. BEREND I, FRANCOIS M, et al.Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite 3: the Mg2+, Ca2+, Sr2+ and Ba2+ exchanged forms[J]. Clays & Clay Minerals, 1997, 45(1): 8-22.
    [11]
    BEREND I, CASES J M, FRANCOIS M, et al.Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites 2: the Li+, Na+, K+, Rb+and Cs+-exchanged forms[J]. Clays & Clay Minerals, 1995, 43(3): 324-336.
    [12]
    DUECK A.Laboratory results from hydro-mechanical tests on a water unsaturated bentonite[J]. Engineering Geology, 2008, 97(1/2): 15-24.
    [13]
    BACHMANN J, VAN D P R R. A review on recent developments in soil water retention theory: interfacial tension and temperature effects[J]. Journal of Plant Nutrition & Soil Science, 2002, 165(4): 468-478.
    [14]
    PETERSEN L W, MOLDRUP P, JACOBSEN O H, et al.Relations between specific surface area and soil physical and chemical properties[J]. Soil Science, 1996, 161(1): 9-21.
    [15]
    FRYDMAN S, BAKER R.Theoretical soil-water characteristic curves based on adsorption, cavitation, and a double porosity model[J]. International Journal of Geomechanics, 2009, 9(6): 250-257.
    [16]
    SILVA O, GRIFOLL J.A soil-water retention function that includes the hyper-dry region through the BET adsorption isotherm[J]. Water Resources Research, 2007, 43(11): 398-408.
    [17]
    HATCH C D, WIESE J S, CRANE C C, et al.Water adsorption on clay minerals as a function of relative humidity: application of BET and Freundlich adsorption models[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2012, 28(3): 1790.
    [18]
    WOODRUFF W, REVIL A.CEC-normalized clay-water sorption isotherm[J]. Water Resources Research, 2011, 47: W11502.
    [19]
    REVIL A, LU N.Unified water isotherms for clayey porous materials[J]. Water Resources Research, 2013, 49(9): 5685-5699.
    [20]
    MOONEY R W, KEENAN A G, WOOD L A.Adsorption of water vapor by montmorillonite. I. Heat of desorption and application of BET theory[J]. Journal of the American Chemical Society, 1952, 74(6): 1367-1374.
    [21]
    DIOS C G, HUERTAS F J, ROMERO T E, et al.Adsorption of water vapor by homoionic montmorillonites: heats of adsorption and desorption[J]. Journal of Colloid & Interface Science, 1997, 185(2): 343.
    [22]
    陈善雄, 孔令伟, 郭爱国. 膨胀土工程特性及其石灰改性试验研究[J]. 岩土力学, 2002, 23(增刊1): 9-12.
    (CHEN Shan-xiong, KONG Ling-wei, GUO Ai-guo.Experimental research on engineering properties of expansive soil and lime stabilized soil[J]. Rock and Soil Mechanics, 2002, 23(S1): 9-12. (in Chinese))
    [23]
    AL-MUKHTAR M, LASLEDJ A, ALCOVER J F.Behaviour and mineralogy changes in lime-treated expansive soil at 50℃[J]. Applied Clay Science, 2010, 50(2): 199-203.
    [24]
    CHEW S H, KAMRUZZAMAN A H M, LEE F H. Physicochemical and engineering behavior of cement treated clays[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2004, 130(7): 696-706.
    [25]
    RAO S M, REDDY B V V, MUTTHARAM M. The impact of cyclic wetting and drying on the swelling behaviour of stabilized expansive soils[J]. Engineering Geology, 2001, 60(1/2/3/4): 223-233.
    [26]
    YAZDANDOUST F, YASROBI S S.Effect of cyclic wetting and drying on swelling behavior of polymer-stabilized expansive clays[J]. Applied Clay Science, 2010, 50(4): 461-468.
    [27]
    SCHOLEN D E.Stabilizer mechanisms in nonstandard stabilizers[C]// 6th International Conference on Low Volume Roads. Minneapolis, 1995.
    [28]
    PETRY T, DAS B.Evaluation of chemical modifiers and stabilizers for chemically active soils: clays[J]. Transportation Research Record Journal of the Transportation Research Board, 2001, 1757(1): 43-49.
    [29]
    RAUCH A, HARMON J, KATZ L, et al.Measured effects of liquid soil stabilizers on engineering properties of clay[J]. Transportation Research Record Journal of the Transportation Research Board, 2002, 1787(1): 33-41.
    [30]
    汪益敏, 张丽娟, 苏卫国, 等. ISS加固土的试验研究[J]. 公路, 2001(7): 39-43.
    (WANG Yi-min, ZHANG Li-juan, SU Wei-guo, et al.Experimental study of stabilizing soil by adapting ISS[J]. Highway, 2001(7): 39-43. (in Chinese))
    [31]
    刘清秉, 项伟, 张伟锋, 等. 离子土壤固化剂改性膨胀土的试验研究[J]. 岩土力学, 2009, 30(8): 2286-2290.
    (LIU Qing-bing, XIANG Wei, ZHANG Wei-feng, et al.Experimental study of ionic soil stabilizer-improves expansive soil[J]. Rock and Soil Mechanics, 2009, 30(8): 2286-2290. (in Chinese))
    [32]
    KATZ L, RAUCH A, LILJESTRAND H, et al.Mechanisms of soil stabilization with liquid ionic stabilizer[J]. Transportation Research Record, 2001, 1757(1): 50-57.
    [33]
    刘清秉, 项伟, 崔德山, 等. 离子土固化剂改良膨胀土的机理研究[J]. 岩土工程学报, 2011, 33(4): 648-654.
    (LIU Qing-bing, XIANG Wei, CUI De-shan, et al.Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648-654. (in Chinese))
    [34]
    雷雯. 新型土壤固化剂的制备及应用[D]. 武汉: 中国地质大学(武汉), 2014.
    (LEI Wen. Development and application of a new ionic soil stabilizer[D]. Wuhan: China University of Geosciences(Wuhan), 2014. (in Chinese))
    [35]
    KHORSHIDI M, LU N.Intrinsic relation between soil water retention and cation exchange capacity[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2016, 143(4): 4016119.
    [36]
    ISRAELACHVILI J N.Intermolecular and surface forces[M]. 3rd ed. Amsterdam: Academic Press, 1992: 59-65.
    [37]
    FERRAGE E, LANSON E, SAKHAROV B, et al.Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties[J]. American Mineralogist, 2005, 90(8/9): 1358-1374.
    [38]
    CHIPERA S J, CAREY J W, BISH D L.Controlled-humidity XRD analyses: application to the study of smectite expansion/contraction[J]. Advances in X-Ray Analysis, 1997, 39: 713-722.
    [39]
    须藤俊男. 黏土矿物学[M]. 严寿鹤, 等, 译. 北京: 地质出版社, 1981.
    (SUDO T.Clay minerals[M]. YAN Shou-he, et al, trans. Beijing: Geological Press, 1981. (in Chinese))
    [40]
    崔德山. 离子土壤固化剂对武汉红色黏土结合水作用机理研究[D]. 武汉: 中国地质大学 (武汉), 2009.
    (CUI De-shan. Research on the reaction mechanism of adsorbed water in red clay of Wuhan with ionic soil stabilizer[D]. Wuhan: China University of Geosciences (Wuhan), 2009. (in Chinese))
    [41]
    NITAO J J, BEAR J.Potentials and their role in transport in porous media[J]. Water Resources Research, 1996, 32(2): 225-250.
    [42]
    MOONEY R W, KEENAN A G, WOOD L A.Adsorption of water vapor by montmorillonite: II effect of exchangeable ions and lattice swelling as measured by x-ray diffraction[J]. Journal of the American Chemical Society, 1952, 74(6).
    [43]
    AKIN I D.Clay surface properties by water vapor sorption methods[D]. Madison: University of Wisconsin-Madison, 2014.
    [44]
    FORESTIER L L, MULLER F, VILLIERAS F, et al.Textural and hydration properties of a synthetic montmorillonite compared with a natural Na-exchanged clay analogue[J]. Applied Clay Science, 2010, 48(1): 18-25.
    [45]
    KEREN R.Water vapor isotherms and heat of immersion of na/ca-montmorillonite systems: i homoionic clay[J]. Clays & Clay Minerals, 1975, 23(3): 193-200.
    [46]
    HAMAKER H C.The London—van der Waals attraction between spherical particles[J]. Physica, 1937, 4(10): 1058-1072.
    [47]
    TULLER M, OR D, DUDLEY L M.Adsorption and capillary condensation in porous media: liquid retention and interfacial configurations in angular pores[J]. Water Resources Research, 1999, 35(7): 1949-1964.
    [48]
    TULLER M, OR D.Water films and scaling of soil characteristic curves at low water contents[J]. Water Resources Research, 2005, 41(W09403): 319-335.
  • Cited by

    Periodical cited type(13)

    1. 严辉,林沛元. 深圳市岩溶地层标准贯入击数神经网络模型. 地质科技通报. 2025(02): 305-321 .
    2. 李书兆,孙国栋,申辰,李文逵,罗进华,王教龙. 基于深度学习和地震数据的海上风电场CPT预测研究. 工程地球物理学报. 2025(02): 216-226 .
    3. 崔纪飞,柏林,饶平平,康陈俊杰,张锟. 基于人工智能算法的氯盐侵蚀混凝土预测模型. 硅酸盐通报. 2024(02): 439-447 .
    4. 段文魁,王来发,晁华俊,明锋. 冻结过程中土体导热系数预测模型. 中国农村水利水电. 2024(05): 47-52 .
    5. 唐少容,殷磊,杨强,柯德秀. 微胶囊相变材料改良粉砂土的导热系数及预测模型. 中国粉体技术. 2024(03): 112-123 .
    6. 姚兆明,王洵,齐健. 土体导热系数智能方法预测及影响因素敏感性分析. 工程热物理学报. 2024(05): 1440-1449 .
    7. 邓志兴,谢康,李泰灃,王武斌,郝哲睿,李佳珅. 基于粗颗粒嵌锁点高铁级配碎石振动压实质量控制新方法. 岩土力学. 2024(06): 1835-1849 .
    8. 李林,左林龙,胡涛涛,宋博恺. 基于孔压静力触探试验测试数据的原位固结系数物理信息神经网络反演方法. 岩土力学. 2024(10): 2889-2899 .
    9. 王红旗,李栋伟,钟石明,贾志文,王泽成,陈鑫,秦子鹏. 石灰改良红黏土导热系数影响因素及模型预测. 科学技术与工程. 2023(05): 2084-2092 .
    10. 王才进,武猛,蔡国军,赵泽宁,刘松玉. 基于多元分布模型预测土体热阻系数. 岩石力学与工程学报. 2023(S1): 3674-3686 .
    11. 王健翔,任瑞琪. 电学等效的稳态平板导热系数测试实验装置. 电子制作. 2023(11): 105-109 .
    12. 王才进,武猛,杨洋,蔡国军,刘松玉,何欢,常建新. 基于生物地理优化的人工神经网络模型预测软土的固结系数. 岩土力学. 2023(10): 3022-3030 .
    13. 徐明,康雅晶,马斯斯,张鹤. 基于贝叶斯优化的XGBoost模型预测路基回弹模量. 公路交通科技. 2023(11): 51-60 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return