• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HU Wei, GAO Wen-hua, ZHAO Pu, LIU Shun-kai, LONG Cheng-bi. Three-dimensional unified theoretical researches on ultimate horizontal pullout capacity of vertical square anchors[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 111-120. DOI: 10.11779/CJGE201901012
Citation: HU Wei, GAO Wen-hua, ZHAO Pu, LIU Shun-kai, LONG Cheng-bi. Three-dimensional unified theoretical researches on ultimate horizontal pullout capacity of vertical square anchors[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 111-120. DOI: 10.11779/CJGE201901012

Three-dimensional unified theoretical researches on ultimate horizontal pullout capacity of vertical square anchors

More Information
  • Received Date: November 26, 2017
  • Published Date: January 24, 2019
  • The researches on mechanical mechanism and bearing capacity of horizontal pullout of vertical square anchor plates have the problem of artificially distinguishing shallow and deep buried types without uniform definition standards. This study is devoted to the researches on the three-dimensional unified theoretical solution of horizontal ultimate pullout capacity of a vertical square anchor plate based on deep analysis of failure mechanism. The symmetry of failure mechanism varying with soil properties and buried ratios in vertical and horizontal directions is reflected by the evolution of projected triangles of rectangular pyramid soil core before the anchor plate to the vertical plane and horizontal plane, respectively. A three- dimensional unified mechanical model is established for the horizontal ultimate pullout of the vertical square anchor plate. The ultimate mechanical equilibrium analysis method is used for different loaded bodies in turns to derive the three-dimensional unified theoretical solution. Comparison with other theoretical methods and test data indicates that the new model can reflect the continuous variation rules of the symmetry of failure mechanism very well in different ranges of depth ratio. The three-dimensional unified theoretical solution has extensive applicability to the model test and field test data. The new solution performs the best as its calculation result is more close to the measured value with smaller discreteness and the average is generally safe.
  • [1]
    蔡正银, 侯伟. 单锚板桩结构的工作机理[J]. 岩土工程学报, 2015, 37(1): 29-34.
    (CAI Zheng-yin, HOU Wei.Mechanism of sheet-pile structure with a single anchorage[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 29-34. (in Chinese))
    [2]
    DICKIN E A, LAMAN M.Uplift response of strip anchors in cohesionless soil[J]. Advances in Engineering Software, 2007, 38(8): 618-625.
    [3]
    郝冬雪, 符胜男, 陈榕, 等. 砂土中锚板拉拔模型试验及其抗拔力计算[J]. 岩土工程学报, 2015, 37(11): 2101-2106.
    (HAO Dong-xue, FU Sheng-nan, CHEN Rong, et al.Experimental investigation of uplift behavior of anchors and estimation of uplift capacity in sands[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2101-2106. (in Chinese)
    [4]
    ROWE R K, DAVIS E H.The behavior of anchor plates in sand[J]. Géotechnique, 1982, 32(1): 25-41.
    [5]
    KAME G S, DEWAIKAR D M, CHOUDHURY D.Pullout capacity of a vertical plate anchor embedded in cohesion-less soil[J]. Earth Science Research, 2012, 1(1): 27-56.
    [6]
    朱碧堂, 杨敏, 郭蔚东. 竖向浅埋锚锭板的侧向极限拉拔荷载[J]. 岩土工程学报, 2006, 28(10): 1236-1241.
    (ZHU Bi-tang, YANG Min, GUO Wei-dong.Pullout capacity of vertically-burried shallow anchor plates[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1236-1241. (in Chinese))
    [7]
    JTS 167—3—2009 板桩码头设计与施工规范[S]. 2009.
    (JTS 167—3—2009 Design and construction specification of sheet pile wharf[S]. 2009. (in Chinese))
    [8]
    丁佩民, 肖志斌, 张其林, 等. 砂土中锚板抗拔承载力研究[J]. 建筑结构学报, 2003, 24(5): 82-91.
    (DING Pei-min, XIAO Zhi-bin, ZHANG Qi-lin, et al.Uplift capacity of anchor plates in sand[J]. Journal of Building Structures, 2003, 24(5): 82-91. (in Chinese))
    [9]
    张续萱, 吴肖茗. 新型支挡—锚板挡土结构的理论与实践[M]. 北京: 中国铁道出版社, 1996.
    (ZHANG Xu-xuan, WU Xiao-min.A new type of support structure: the theory and practice of anchor-plate soil retaining structure[M]. Beijing: China Railway Publishing House, 1996. (in Chinese))
    [10]
    Public Works Research Center. Technical report on rational design method of reinforced soil walls[R]. Ibaraki: University of Tsukuba, 1995. (in Japanese)
    [11]
    MIYATA Y, BATHURST R J, KONAMI T.Evaluation of two anchor plate capacity models for MAW systems[J]. Soils and Foundations, 2011, 51(5): 885-895.
    [12]
    NEELY W J, STUART J G, GRAHAM J.Failure loads of vertical anchor plates in sand[J]. Journal Soil Mechanics and Foundation Division, ASCE, 1973, 99(9): 669-685.
    [13]
    MERIFIELD R S.Numerical modelling of soil anchors[D]. Newcastle: University of Newcastle, 2002.
    [14]
    胡伟, 刘顺凯, 邹贵华, 等. 竖向条形锚定板水平拉拔极限承载力统一理论解研究[J]. 岩土工程学报, 2018, 40(2): 296-304.
    (HU Wei, LIU Shun-kai, ZOU Gui-hua, et al.Unified theoretical solution for ultimate bearing capacity of vertical strip anchor[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 296-304. (in Chinese))
    [15]
    TAKEOKA Y, WATANABE Y, KODAKA T, et al.Pullout test of reinforcement in sandy soil considering bearing resistance and friction resistance[C]// Proceedings of the 44th Japanese Geotechnical Society Annual Meeting. Yokohama, 2009: 465-466. (in Japanese)
    [16]
    TERZAGHI K, PECK R B, MESRI G.Soil mechanics in engineering practice[M]. 3rd ed. New York: John Wiley and Sons, Inc, 1996.
    [17]
    DAS B M.Pullout resistance of vertical plate[J]. Journal of Soil Mechanics and Foundations Division, ASCE, 1977, 100(GT1): 87-91.
    [18]
    DAS B M, PICORNELL M.Ultimate resistance of vertical plate anchors in clay[J]. Coastal Engineering, 2012: 1831-1842.
    [19]
    SMITH J E. Tests of Concrete deadman anchorages in sand[R]. Calif: U.S. Navel Civil Engineering Laboratory Technical Memorandum, 1957, M-121.
    [20]
    MIYATA Y, BATHURST R J, KONAMI T, et al.Influence of transient flooding on multi-anchor walls[J]. Soils and Foundations, 2010, 50(3): 371-382.
    [21]
    FUKUOKA M, IMAMURA Y, SAWADA S, et al.Laboratory pullout tests on plate-anchors[C]// Proceedings of the 19th Japanese Geotechnical Society Annual Meeting. Matsuyama, 1984: 1179-1180. (in Japanese)
  • Cited by

    Periodical cited type(9)

    1. 陈鑫,余文亮. 混合型缓冲回填材料劈裂抗拉强度尺寸效应统计分析. 科学技术与工程. 2024(10): 4229-4238 .
    2. 陈梦豪,付海,曹珊珊,林铭宇,陈良宇. 温度对MX-80膨润土物理性能的影响. 金陵科技学院学报. 2024(01): 46-53 .
    3. 刘桃根,李玲,王伟,谢敬礼,刘造保. 黏土-砂混合物三轴压缩超声波特性研究. 地下空间与工程学报. 2024(S1): 119-127 .
    4. 项国圣,卞云飞,付文青,周殷康. 热-碱作用对压实膨润土抗剪性能的影响. 安徽建筑大学学报. 2024(06): 8-14 .
    5. 曹胜飞,刘月妙,谢敬礼,张奇,杨明桃,高玉峰. 高放废物处置缓冲材料砌块抗压强度特性试验研究. 世界核地质科学. 2023(01): 58-67 .
    6. 张潜华. 微波技术在路基软土力学性质修复中的试验研究. 西部交通科技. 2023(01): 75-77 .
    7. 蒋银强,梁建楠,赵雅贞,段朕,赵昊洋. 微波加热对膨胀土膨胀性影响的试验研究. 南阳理工学院学报. 2023(06): 68-72 .
    8. 曹胜飞,刘月妙,谢敬礼,闫安,高玉峰,佟强. 高庙子膨润土热膨胀特性试验研究. 岩土工程学报. 2022(02): 377-383 . 本站查看
    9. 樊恒辉,倪晓逸,孟敏强,杨秀娟,张路. 土体热加固方法的研究进展. 水利与建筑工程学报. 2021(05): 1-7 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return