• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHENG Gang, LIU Chang, LIU Yong-chao, HU Qiu-bin, WANG Cheng-bo, KANG Gu-yi, LIU Yan-po. Experimental study on horizontal bearing behaviors of different types of full-scale piles under reciprocating horizontal loads[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 32-40. DOI: 10.11779/CJGE201901003
Citation: ZHENG Gang, LIU Chang, LIU Yong-chao, HU Qiu-bin, WANG Cheng-bo, KANG Gu-yi, LIU Yan-po. Experimental study on horizontal bearing behaviors of different types of full-scale piles under reciprocating horizontal loads[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 32-40. DOI: 10.11779/CJGE201901003

Experimental study on horizontal bearing behaviors of different types of full-scale piles under reciprocating horizontal loads

More Information
  • Received Date: October 10, 2017
  • Published Date: January 24, 2019
  • The field pseudo-static tests on 38 prototype piles in in-situ soil conditions, which contain prestressed pipe piles, prestressed squared piles and bored cast-in-situ piles, are made in a typical soft soil site of Hangu, Tianjin. The bearing and seismic behaviors of all kinds of full-scale piles under the pile-soil interaction subjected to low-cycle reciprocating horizontal loads at the pile top are studied. The failure modes, load-displacement relationships and displacement ductility among the prestressed pipe piles, composite-reinforced piles with distributed non-prestressed reinforcements and bored cast-in-situ piles are compared. The results indicate that the regular prestressed pipe pile has poor ductility and is brittle during failure. The displacement ductility and energy dissipation capacity of the composite-reinforced piles are obviously improved by adding non-prestressed reinforcements in addition to prestressed steel bars. This consequently leads to the ductile failure mode. Therefore, adding conventional steel without prestress is an effective measure to improve the seismic performance of prestressed piles. The displacement ductility factor of all the bored cast-in-situ piles with different reinforcement ratios exceeds 4.5, which means that their ductility and energy dissipation capacity are good. The displacement ductility factors of both the composite-reinforced piles and bored cast-in-situ piles increase at first then decrease with the reinforcement ratio of the increasing non-prestressed reinforcements while there is an optimal reinforcement ratio of the displacement ductility.
  • [1]
    刘春原, 张振拴, 母焕胜. 预应力混凝土管桩的抗震性能及新进展[M]. 北京: 人民交通出版社, 2013: 1-2.
    (LIU Chun-yuan, ZHANG Zhen-shuan, MU Huan-sheng.Seismic performance and new progress of prestressed concrete pipe pile[M]. Beijing: China Communications Press, 2013: 1-2. (in Chinese))
    [2]
    DAVISSON M T, SALLEY J R.Model study of laterally loaded piles[J]. Journal of Soil Mechanics & Foundations Div, 1970, 96(5): 1605-1627.
    [3]
    MAYNE P W, KULHAWY F H.Laboratory loaded modeling of laterally loaded drilled shafts in clay[J]. J Geotechnical Engineering, 1995, 121(12): 827-835.
    [4]
    DYSON G J, RANDOLPH M F.Monotonic laterally loading of piles in calcareous sand[J]. Journal of Geoteehnieal and Geoenvironmental Engineering, 2001, 127(4): 346-352.
    [5]
    王钰, 林军, 陈锦剑, 等. 软土地基中PHC管桩水平受荷性状的试验研究[J]. 岩土力学, 2005, 26(增刊): 39-42.
    (WANG Yu, LIN Jun, CHEN Jin-jian, et al.Field test for the behavior of pre-stressed pipe piles in soft subsoil under lateral load[J]. Rock and Soil Mechanics, 2005, 26(S0): 39-42. (in Chinese))
    [6]
    周万清, 蔡健, 林奕禧, 等. 深厚软土地基细长PHC管桩水平荷载试验研究[J]. 华南理工大学学报(自然科学版), 2007, 35(7): 131-136.
    (ZHOU Wan-qing, CAI Jian, LIN Yi-xi, et al.Expermiental investigation into PHC pipe piles under lateral load in deep soft soil foundation[J]. Journal of South China University of Technology (Natural Science Edition), 2007, 35(7): 131-136. (in Chinese))
    [7]
    王铁成, 杨志坚, 赵海龙, 等. 改善预应力高强混凝土管桩抗震性能试验研究及数值分析[C]// 第十六届全国混凝土及预应力混凝土学术会议暨第十二届预应力学术交流会论文集. 九江, 2013: 45-53.
    (WANG Tie-cheng, YANG Zhi-jian, ZHAO Hai-long, et al.Experimental study and numerical analysis on seismic behavior of prestressed high strength concrete pipe pile[C]// Proceedings of the 16th National Conference on the Study of Concrete and Prestressed Concrete and the 12th Session of the Academic Conference of Prestress. Jiujiang, 2013: 45-53. (in Chinese))
    [8]
    王铁成, 王文进, 赵海龙, 等. 不同高强预应力管桩抗震性能的试验对比[J]. 工业建筑, 2014, 44(7): 84-89.
    (WANG Tie-cheng, WANG Wen-jin, ZHAO Hai-long, et al.Seismic performance of different prestressed high strength concrete pipe piles[J]. Industrial Construction, 2014, 44(7): 84-89. (in Chinese))
    [9]
    李艳艳, 陈艳风, 刘坤, 等. 预应力高强混凝土管桩抗震性能试验研究[J]. 河北工业大学学报, 2013, 42(5): 99-103.
    (LI Yan-yan, CHEN Yan-feng, LIU Kun, et al.Seismic performance of prestressed high-intensity concrete pile[J]. Journal of Hebei University of Technology, 2013, 42(5): 99-103. (in Chinese))
    [10]
    刘春原, 李光宏, 李兵. 预应力管桩振动台试验的数值分析[J]. 岩土力学, 2012, 33(增刊1): 265-269.
    (LIU Chun-uan, LI Guang-hong, LI Bing.Numerical analysis of shaking table test for prestressed pipe piles[J]. Rock and Soil Mechanics, 2012, 33(S1): 265-269. (in Chinese))
    [11]
    张忠苗, 刘俊伟, 谢志专, 等. 新型混凝土管桩抗弯剪性能试验研究[J]. 岩土工程学报, 2011, 33(增刊2): 271-277.
    (ZHANG Zhong-miao, LIU Jun-wei, XIE Zhi-zhuan, et al.Experimental study on flexural and shearing properties of modified concrete pipe piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S2): 271-277. (in Chinese))
    [12]
    张忠苗, 刘俊伟, 邹健, 等. 加强型预应力混凝土管桩抗弯剪性能试验研究[J]. 浙江大学学报(工学版), 2011, 45(6): 1074-1080.
    (ZHANG Zhong-miao, LIU Jun-wei, ZOU Jian, et al.Experimental study on flexural and shearing property of reinforced prestressed concrete pipe pile[J]. Journal of Zhejiang University(Engineering Science), 2011, 45(6): 1074-1080. (in Chinese))
    [13]
    王铁成, 杜宙芳, 赵海龙, 等. 混合配筋管桩的抗震性能试验研究[J]. 土木工程与管理学报, 2015(3): 27-32.
    (WANG Tie-cheng, DU Zhou-fang, ZHAO Hai-long, et al.Experimental research on aseismic behavior of pipe piles with hybrid reinforcement[J]. Journal of Civil Engineering and Management, 2015(3): 27-32. (in Chinese))
    [14]
    戎贤, 邸昊, 李艳艳. PHC管桩抗震性能及其改善措施的试验研究[J]. 混凝土与水泥制品, 2012(9): 32-36.
    (RONG Xian, DI Hao, LI Yan-yan.Experimental study on seismic behavior and improvement measures of PHC pipe pile[J]. China Concrete and Cement Products, 2012(9): 32-36. (in Chinese))
    [15]
    戎贤, 王旭月, 李艳艳. 反复荷载作用下改善的PHC管桩的抗震性能试验研究[J]. 建筑科学, 2013, 29(7): 59-65.
    (RONG Xian, WANG Xu-yue, LI Yan-yan.Test study on seismic behavior of the improved PHC pipe piles under low cyclic loading[J]. Building Science, 2013, 29(7): 59-65. (in Chinese))
    [16]
    戎贤, 齐晓光, 李艳艳. 预应力高强混凝土管桩滞回性能的试验研究[J]. 河北工业大学学报, 2013, 43(2): 88-91.
    (RONG Xian, QI Xiao-guang, LI Yan-yan.Experimental research on hysteretic behavior of prestressed high strength concrete pipe piles[J]. Journal of Hebei University of Technology, 2013, 43(2): 88-91. (in Chinese))
    [17]
    王新玲, 杜琳, 黄伟东. 混合配筋预应力混凝土管桩抗弯刚度模型研究[J]. 郑州大学学报(工学版), 2013, 34(6): 80-84.
    (WANG Xin-ling, DU Lin, HUANG Wei-dong.Stiffness study of prestressed and reinforced concrete compounded pipe pile[J]. Journal of Zhengzhou University( Engineering Science), 2013, 34(6): 80-84. (in Chinese))
    [18]
    王新玲, 高会宗, 周同和, 等. 新型混合配筋预应力混凝土管桩抗弯性能试验研究[J]. 工业建筑, 2012, 42(8): 64-68.
    (WANG Xin-ling, GAO Hui-zong, ZHOU Tong-he, et al.Experimental studies of flexural behavior of new type prestressed concrete pipe pile with compound unprestressed reinforcement[J]. Industrial Construction, 2012, 42(8): 64-68. (in Chinese))
    [19]
    王新玲, 冯香玲. 混合配筋新型预应力混凝土管桩抗弯性能研究[J]. 施工技术, 2012, 41(16): 118-122.
    (WANG Xin-ling, FENG Xiang-ling.Study on flexural behavior of new type prestressed concrete pipe pile for compounding reinforcement[J]. Construction Technology, 2012, 41(16): 118-122. (in Chinese))
    [20]
    李忠献. 工程结构试验理论与技术[M]. 天津: 天津大学出版社, 2004.
    (LI Zhong-xian.Theory and technique of engineering structure experiments[M]. Tianjin: Tianjin University Press, 2004. (in Chinese))

Catalog

    Article views (306) PDF downloads (298) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return