• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LUO Qing-zi, CHEN Xiao-ping, YUAN Bing-xiang, FENG De-luan. Elastic visco-plastic model for soft clay based on isochronous curves[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 142-146. DOI: 10.11779/CJGE2018S2029
Citation: LUO Qing-zi, CHEN Xiao-ping, YUAN Bing-xiang, FENG De-luan. Elastic visco-plastic model for soft clay based on isochronous curves[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 142-146. DOI: 10.11779/CJGE2018S2029

Elastic visco-plastic model for soft clay based on isochronous curves

More Information
  • Received Date: July 21, 2018
  • Published Date: October 29, 2018
  • The deformation of soft clay is closely related to the time, including both consolidation effect and creep effect, between which the interaction determines the settlement and long-term settlement of soft soils. Based on the Bjerrum's theory of isochronous curves, an elastic visco-plastic constitutive model for soft clay is derived, which is used to replace the linear elastic stress-strain relationship of Terzaghi's consolidation theory. And with further consideration of nonlinear seepage influence, one-dimensional nonlinear governing equations which can couple the effect of creep and consolidation are established. There are 8 model parameters with concise physical meanings in this model, which can be obtained through laboratory tests easily. In addition, the Crank-Nicolson finite difference method can be used to solve the governing equations under certain boundary conditions. In order to verify the validity of the model, the calculated results by this model are contrasted with the results of oedometer tests and Leroueil and Kabbj' s CRS tests. It is shown that the calculated values are in good agreement with the experimental results.
  • [1]
    LADD C C, FOOTT R, ISHIHARA K, et al.Stress- deformation and strength characteristic[C]// Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering. Tokyo, 1977: 421-494.
    [2]
    MESRI G, CHOI Y K.The uniqueness of the end-of- primary (EOP) void ratio-effective stress relationship[C]// Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering. San Francisco, 1985: 587-590.
    [3]
    MESRI G.Primary compression and secondary compression[J]. Geotechnical Special Publication, 2003, 119: 122-166.
    [4]
    BERRE T, IVERSEN K.Oedometer tests which different specimen heights on a clay exhibiting large secondary compression[J]. Géotechnique, 1972, 22(1): 53-70.
    [5]
    IMAI G., TANG Y X.A constitutive equation of one dimensional consolidation derived from inter-connected tests[J]. Soils and Foundations,Japanese Geotechnical Society, 1992, 32(2): 83-96.
    [6]
    KABBAJ M, TAVENAS F, LEROUEIL S.In situ and laboratory stress-strain relationships[J]. Géotechnique, 1988, 38(1): 83-100.
    [7]
    LEONI M, KARSTUNEN M, VERMEER PA.Anisotropic creep model for soft soils[J]. Géotechnique, 2008, 58(3): 215-226.
    [8]
    NASH D, BROWN M.Influence of destructuration of soft clay on time-dependent settlements: comparison of some elastic viscoplastic models[J]. International Journal of Geomechanics, 2015, 15: 1-19.
    [9]
    KARIM M R, GNANENDRAN C T, et al.Predicting the long-term performance of a wide embankment on soft soil using an elastic-vicoplastic model[J]. Canadian Geotechnical Journal, 2010, 47(2): 244-257.
    [10]
    殷建华, JACK I C.土体与时间相关的一维应力-应变性状、弹黏塑性模型和固结分析[J]. 岩土力学, 1994, 15(3): 65-80.
    (YIN Jian-hua, JACK I C.One-dimensional time dependent stress-strain behaviour of soils, elastic visco-plastic modelling, and consolidation analysis[J]. Rock and Soil Mechanics, 1994, 15(3): 65-80. (in Chinese))
    [11]
    YIN J H, FENG W Q.A new simplified method and its verification for calculation of consolidation settlement of a clayey soil with creep[J]. Canadian Geotechnical Journal, 2015, 54(3): 1-46.
    [12]
    姚仰平, 孔令明, 胡晶. 考虑时间效应的UH模型[J]. 中国科学, 2013, 43(3): 298-314.
    (YAO Yang-ping, KONG Ling-ming, HU Jing.UH model considering temperature effects[J]. Science China Press, 2013, 43(3): 298-314. (in Chinese))
    [13]
    STOLLE D F E, VERMEER P A, BONNIER P G. A consolidation model for creeping clay[J]. Canadian Geotechnical Journal, 1999, 36: 754-759.
    [14]
    VERMEER P A, NEHER H P.A soft soil model that accounts for creep[C]// Beyond 2000 in Computational Geotechnics-10 Years of PLAXIS. Rotterdam: Balkema, 1999: 249-262.
    [15]
    FENG W Q, YIN J H.A new simplified Hypothesis B method for calculating consolidation settlements of double soil layers exhibiting creep[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41: 899-917.
    [16]
    MADASCHI A, GAJO A.A one-dimensional viscoelastic and viscoplastic constitutive approach to modeling the delayed behavior of clay and organic soils[J]. Acta Geotechnica, 2017, 12: 827-847.
    [17]
    尹振宇. 天然软黏土的弹黏塑性本构模型:进展及发展[J]. 岩土工程学报, 2011, 33(9): 1357-1369.
    (YIN Zhen-yu.Elastic viscoplastic models for natural soft clay: review and development[J]. Chines Journal of Geotechnical Engineering, 2011, 33(9): 1357-1369. (in Chinese))
    [18]
    LEROUEIL S, KABBAJ M, TAVENAS F, et al.Stress-strain-strain rate relation for the compressibility of sensitive natural clays[J]. Géotechnique, 1985, 35(2): 159-180.
    [19]
    CRAWFORD C B.Interpretation of the consolidation test[J]. Journal of the Soil Mechanics and Foundation Division, 1964, 90(5): 87-102.
    [20]
    BJERRUM L.Embankments on softground: state of the art report[C]// Proceedings of Speciality Conference on Performance of Earth and Earth Supported Structures. Hosier State: Purdue University, 1972: 1-54.
    [21]
    BERRY P L, POSKITT T J.The consolidation of peat[J]. Géotechnique, 1972, 22(1): 27-52.
  • Cited by

    Periodical cited type(12)

    1. 王鹏,王海,孙利琴,应本林,程熙洋,李永辉. 应力作用下黄泛区粉土的孔隙特征研究. 四川建筑科学研究. 2025(02): 60-69 .
    2. 武亚军,岳皓凡,臧学轲,张旭东,章长松,吴金红. 不同黏粒含量土的固结和重金属吸附解吸特性. 长江科学院院报. 2025(05): 88-96 .
    3. 李珊,李培勇. 硅酸钾溶液对黏性土体微观结构的影响研究. 广东建材. 2024(01): 9-13 .
    4. 王静,胡金虎,杨亚源,周邦龙,任帅. 分级循环荷载下粉土动力特性研究. 水利与建筑工程学报. 2024(06): 166-171 .
    5. 曹胜飞,刘月妙,谢敬礼,张奇,杨明桃,高玉峰. 高放废物处置缓冲材料砌块抗压强度特性试验研究. 世界核地质科学. 2023(01): 58-67 .
    6. 刘猛,许晨曦,孟凡会,高静静,白赟,宋琳琳. 粉土颗粒分析试验影响因素分析. 济南大学学报(自然科学版). 2023(04): 493-498 .
    7. 沈吴钦,吴昌将,张军,毛良根,仲栋宇. 深基坑模型试验中相似土配比及其微观表征研究. 人民长江. 2023(09): 236-244 .
    8. 张岩,樊亮,王林,侯佳林,谷传庆. 黏粒含量对粉土抗压强度的影响. 路基工程. 2022(01): 44-48 .
    9. 谌文武,贾博博,覃一伦,贾全全. 融雪入渗下含硫酸盐遗址土的冻融劣化特征. 兰州大学学报(自然科学版). 2022(04): 521-527 .
    10. 尹振华,张建明,张虎,王宏磊. 融化压缩下水泥改良冻土的微观孔隙特征演变. 水文地质工程地质. 2021(02): 97-105 .
    11. 付佳佳,王炼,尤苏南,王旭东. 黏-砂混合土压缩特性与微观结构特征关系研究. 长江科学院院报. 2021(05): 115-122 .
    12. 何建新,糟凯龙,杨海华. 塔里木河胡杨实现自我恢复的新方法探索. 水电能源科学. 2021(07): 33-37 .

    Other cited types(19)

Catalog

    Article views PDF downloads Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return