• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Li, LIU Zi-ru. Method for lateral forces in stability analysis of concave slopes in plan view[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 137-141. DOI: 10.11779/CJGE2018S2028
Citation: LI Li, LIU Zi-ru. Method for lateral forces in stability analysis of concave slopes in plan view[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 137-141. DOI: 10.11779/CJGE2018S2028

Method for lateral forces in stability analysis of concave slopes in plan view

More Information
  • Received Date: July 21, 2018
  • Published Date: October 29, 2018
  • Although it is well known that the stability of concave slopes in plan view is better than that of straight slopes, it is difficult to accurately calculate the factor of safety of concave slopes because the lateral forces perpendicular to the sliding direction have an effect on the stability, but there is no suitable method to calculate them. For the sake of simplification, the existing studies calculate the lateral forces by treating that they are active earth pressures. In order to verify the rationality of that treatment, the lateral forces are regarded as the values of active, static and passive earth pressures respectively. Based on the Spencer method, the method for calculating the stability of a concave slope is deduced considering the lateral forces. And then the calculation program is compiled by using the Matlab software to analyze the difference of factor of safety of the concave slope under three different soil pressures. The results show that by considering the lateral pressure as the earth pressure or the static earth pressure, the stability of the concave slope is even lower than that of the straight slope. When the lateral pressure is considered as the passive earth pressure, the factor of safety is significantly larger than that calculated by the finite difference software Flac3D. Therefore, it is unreasonable to simply regard the lateral pressure of the concave slope as the earth pressure as the active, static and passive earth pressures. How to calculate the lateral forces of the concave slope is still a problem to be further studied.
  • [1]
    JENIKE A W, YEN B C.Slope stability in axial symmetry[C]// Proc 5th Symposium on Rock Mechanics. Minesota, 1963: 689-711.
    [2]
    PITEAU D R, JENNINGS J E.The effects of plan geometry on the stability of natural slopes in rock in the Kimberley area of South Africa[C]// Proc 2nd Congress of the International Society of Rock Mechanics. Belgrade, 1970.
    [3]
    HOEK E, BRAY J W.Rock slope engineering[M]. 3rd ed. London: The Institute of Mining and Metallurgy, 1981.
    [4]
    LAM L, FREDLUND D G.A general limit equilibrium model for three-dimensional slope stability analysis[J]. Can Geotech J, 1993, 30: 905-919.
    [5]
    TOTONCHI A, ASKARI F.3D Stability analysis of concave slopes in plan view using linear finite element and lower bound method[J]. IJST, Transactions of Civil Engineering, 2012, 36(C2): 191-194.
    [6]
    LORIG L.Lessons learned from slope stability studies[C]// Proceedings of the International FLAC Symposium on Numerical Modeling in Geomechanics. Minneapolis, 1999: 17-21.
    [7]
    ZHANG X.Three-dimensional stability analysis of concave slopes in plan view[J]. J Geotech Engrg, 1988, 114(6): 658-671.
    [8]
    ZHANG T W, CAI Q X.3D stability analysis method of concave slope based on the Bishop method[J]. International Journal of Mining Science and Technology, 2017, 27: 365-370.
    [9]
    SPENCER E.A method of analysis of embankments assuming parallel inter-slice forces[J]. Géotechnique, 1967, 17(1): 11-26.
    [10]
    ZETTLER A H, POISEL R, ROTH W, et al.Slope stability analysis based on the shear reduction technique in 3D[C]// Proceedings of the International FLAC Symposium on Numerical Modeling in Geomechanics. Minneapolis, 1999: 11-16.
  • Related Articles

    [1]YANG Xu, CAI Guoqing, LIU Qianqian, LI Fengzeng, SHAN Yepeng. Experimental study on influences of wetting-drying cycles on microstructure and water-retention characteristics of clay[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 11-15. DOI: 10.11779/CJGE2024S20006
    [2]HUANG Chun-xia, HUANG Min, CAI Wei, CHEN Guo-xing, LIU Chang, ZHANG Yan-mei. Microstructure of silt with different clay contents[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 758-764. DOI: 10.11779/CJGE202004020
    [3]JIANG Ming-jing, LI Zhi-yuan, HUANG He-peng, LIU Jun. Experimental study on microstructure and mechanical properties of seabed soft soil from South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 17-20. DOI: 10.11779/CJGE2017S2005
    [4]ZHOU Qiao-yong, XIONG Bao-lin, YANG Guang-qing, LIU Wei-chao. Microstructure of low liquid limit silt[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 439-444.
    [5]CHEN Yu-long. Microstructure of expansive soil from Yunnan Province[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 334-339.
    [6]Microstructural change of soft clay before and after one-dimensional compression creep[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1688-1694.
    [7]TANG Chaosheng, SHI Bin, WANG Baojun. Factors affecting analysis of soil microstructure using SEM[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 560-565.
    [8]ZHOU Cuiying, MU Chunmei. Analysis on effective radius of gravel piles reinforcement in soft soil foundations based on microstructure[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 755-758.
    [9]WANG Baojun, SHI Bin, LIU Zhibin, CAI Yi. Fractal study on microstructure of clayey soil by GIS[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 244-247.
    [10]Shi Bin. Quantitative  Assessment  of  Changes  of  Microstructure  for  Clayey  Soil  in  the  Process  of  Compaction[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(4): 60-65.
  • Cited by

    Periodical cited type(13)

    1. 满轲,柳宗旭,商艳,宋志飞,刘晓丽,苏宝. 基于灰色关联分析下深度学习盾构姿态预测模型. 工程科学与技术. 2025(02): 203-213 .
    2. 满轲,曹子祥,刘晓丽,宋志飞,柳宗旭,刘汭琳,武立文. 地质突变条件下基于组合模型的围岩等级和TBM掘进参数预测. 河海大学学报(自然科学版). 2024(01): 55-62 .
    3. 邓志兴,谢康,李泰灃,苏谦,韩征,肖宪普. 基于机器学习的高铁边坡位移预测不确定性度量与应用. 中国铁道科学. 2024(01): 56-67 .
    4. 姜浩,郑亚强,金治军,马庆,董强,郑德焰,林峰,赵炳武. 基于ANN算法的钢结构安装工程质量状态评价. 化工管理. 2024(06): 102-109 .
    5. 郝晶晶,段鹏鑫,陈雨欣,段晓晨. 基于IGWO-SVR的地铁车站投资预测. 铁道学报. 2024(05): 179-188 .
    6. 张洁. 新疆超长隧洞TBM智能掘进施工方法研究. 黑龙江水利科技. 2024(08): 123-125 .
    7. 林平,李有鹏,谭彬. 基于Bootstrap方法和LSSVM模型的滑坡位移区间预测. 测绘与空间地理信息. 2024(09): 48-51+56 .
    8. 张琦,甘超,曹卫华. 大洋钻探过程钻速在线区间预测方法——以微型钻探船室内模拟实验为例. 钻探工程. 2024(05): 45-52 .
    9. 赵高峰,姜宝元,芮福鑫,马洪素,李洁勇,赵晓豹,龚秋明. 基于数值仿真的复杂岩体TBM掘进性能评估模型. 中南大学学报(自然科学版). 2023(03): 984-997 .
    10. 常建涛,乔子萱,孔宪光,杨胜康,罗才文. 多维非线性特征重构与融合的复杂产品工期预测方法. 机械工程学报. 2023(06): 294-308 .
    11. 禹海涛,朱晨阳. 基于BP神经网络的圆形隧道地震响应预测方法及参数分析. 隧道与地下工程灾害防治. 2023(03): 19-26 .
    12. 彭继慎,郝茗,宋立业,李希桐. 基于TSSA-SVR算法的TBM掘进速度预测. 辽宁工程技术大学学报(自然科学版). 2023(05): 634-640 .
    13. 闫静,张雪英,李凤莲,陈桂军,黄丽霞. 结合栈式监督AE与可变加权ELM的回归预测模型. 计算机工程. 2022(08): 62-69+76 .

    Other cited types(11)

Catalog

    Article views (273) PDF downloads (152) Cited by(24)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return