• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
QI Li-cheng, CHEN Qun, ZHU Ya-jun. sSeepage tests on double-layer soils composed of sandy gravel and sand under different stresses and shear displacements[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 63-67. DOI: 10.11779/CJGE2018S2013
Citation: QI Li-cheng, CHEN Qun, ZHU Ya-jun. sSeepage tests on double-layer soils composed of sandy gravel and sand under different stresses and shear displacements[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 63-67. DOI: 10.11779/CJGE2018S2013

sSeepage tests on double-layer soils composed of sandy gravel and sand under different stresses and shear displacements

More Information
  • Received Date: July 21, 2018
  • Published Date: October 29, 2018
  • Many high embankment dams are directly located on the deep overburden layer. After the dam is constructed, large stress and shear displacement will appear in the dam foundation, which has great influence on the seepage stability of the overburden layer. Therefore, it is necessary to carry out the seepage tests on overburden layer considering the influence of stress and shear displacement. Using the large-scale high pressure permeameter, the seepage tests on the double-layer soil composed of sandy gravel and sand are conducted under different vertical stresses and shear displacements to investigate the variation of permeability and seepage resistance gradient with change in vertical and shear displacements. The occurrence and evolution of seepage failure are divided into stable seepage, transitional and failure stages. The test results show that the permeability of the double-layer soils decreases, while the initiated gradient of the fine particles and failure gradient of the soil samples increase with the increasing vertical stress. With the increase in shear displacement, the permeability decreases at first and then increases, while the failure gradient increases at first and then decreases rapidly. When there is no shear displacement and the shear displacement is small, the transitional period between the initiated gradient and the failure gradient is long. After large shear displacement occurs, the transitional period is greatly shortened, and the seepage failure occurs soon after the initiated gradient is reached.
  • [1]
    李树武, 张国明, 聂德新. 西南地区河床覆盖层物理力学特性相关性研究[J]. 水资源与水工程学报, 2011, 22(3): 119-123.
    (LI Shu-wu, ZHANG Guo-ming, NIE De-xin.Research on correlation of physics-mechanics characters in river bed overburden layer in southwest area[J]. Journal of Water Resources & Water Engineering, 2011, 22(3): 119-123. (in Chinese))
    [2]
    MA D.Experimental investigation of seepage properties of fractured rocks under different confining pressures[J]. Rock Mechanics and Rock Engineering, 2017, 46(5): 1135-1144.
    [3]
    凌华, 张胜, 敖大华, 等. 复杂应力状态下土料三轴渗透试验[J]. 河海大学学报(自然科学版), 2017, 45(5): 451-456.
    (LING Hua, ZHANG Sheng, AO Da-hua, et al.Triaxial test study on the permeability of soil under complex stress state[J]. Journal of Hohai University (Natural Sciences), 2017, 45(5): 451-456. (in Chinese))
    [4]
    CHANG D S, ZHANG L M.Critical hydraulic gradients of internal erosion under complex stress states[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 134(1): 57-67.
    [5]
    RICHARDS K S, REDDY K R.Experimental investigation of initiation of backward erosion piping in soils[J]. Géotechnique, 2012, 62(10): 933-942.
    [6]
    雷红军, 卞锋, 于玉贞, 等. 黏土大剪切变形中的渗透特性试验研究[J]. 岩土力学, 2010, 31(4): 1130-1133.
    (LEI Hong-jun, BIAN Feng, YU Yu-zhen, et al.Experimental study of permeability of clayey soil during process of large shear deformation[J]. Rock and Soil Mechanics, 2010, 31(4): 1130-1133. (in Chinese))
    [7]
    雷红军, 刘中阁, 于玉贞, 等. 黏土-结构接触面大剪切变形后渗流特性试验研究[J]. 岩土力学, 2011, 32(4): 1040-1044.
    (LEI Hong-jun, LIU Zhong-ge, YU Yu-zhen, et al.Experimental study of seepage characteristics of clayey soil-structure interface under large shear deformation[J]. Rock and Soil Mechanics, 2011, 32(4): 1040-1044. (in Chinese))
    [8]
    李永辉, 王卫东, 黄茂松, 等. 超长灌注桩桩-土界面剪切试验研究[J]. 岩土力学, 2015, 36(7): 1981-1988.
    (LI Yong-hui, WANG Wei-dong, HUANG Mao-song, et al.Experimental research on pile-soil interface shear behaviors of super-long bored pile[J]. Rock and Soil Mechanics, 2015, 36(7): 1981-1988. (in Chinese))
    [9]
    邬俊杰, 刘帅君, 陈锦剑, 等. 桩土接触面三轴模拟试验设备研究与应用[J]. 上海交通大学学报, 2014, 48(11): 1523-1527, 1535.
    (WU Jun-jie, LIU Shuai-jun, CHEN Jin-jian, et al.Development and application of a triaxial model test system for pile-soil interface[J]. Journal of Shanghai Jiao Tong University, 2014, 48(11): 1523-1527, 1535. (in Chinese))
    [10]
    SL 237—1999 土工试验规程[S]. 1999. (SL 237—1999 Specification of soil test[S]. 1999. (in Chinese))
  • Related Articles

    [1]GU Xiaowei, YI Zihao, WANG Zhe, CHANG Kuan. Influences of excavation of deep foundation pits on deformation of adjacent double-line subway tunnels through measurement analysis[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 214-219. DOI: 10.11779/CJGE2023S20030
    [2]XU Zhong-hua, ZONG Lu-dan, SHEN Jian, WANG Wei-dong. Deformation of a deep excavation adjacent to metro tunnels in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 41-44. DOI: 10.11779/CJGE2019S1011
    [3]DING Zhi, WANG Yong-an, GU Xiao-wei, HUANG Xiao-bin, WEI Xin-jiang, WEI Gang. Vibration of different types of tracks of subway in soft soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 220-223. DOI: 10.11779/CJGE2017S2053
    [4]WANG Yan-sen, WEN Kai. Numerical analysis of interaction between freezing wall and shaft lining in deep alluvia[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1142-1146. DOI: 10.11779/CJGE201406020
    [5]LIU Shuai-jun, WANG Xiao-dong, WANG Jian-hua, CHEN Jin-jian. Numerical analysis of cut-and-cover excavation part of a cross-river tunnel[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 330-334.
    [6]ZHANG Yun-liang, NIE Zi-yun, LI Feng-xiang, WANG Chang-sheng. Deformation prediction of excavations based on numerical analysis[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 113-119.
    [7]ZHU Fengbin, YANG Ping, ONG C W. Numerical analysis on influence of shield tunnel excavation to neighboring piles[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 298-302.
    [8]LI Shuqing, WANG Weijun, PAN Changliang. Numerical analysis on support structure of rock around deep roadway[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 377-381.
    [9]CHEN Fuquan, YANG Min. Numerical analysis of piles influenced by lateral soil movement due to surcharge loads[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 51-55.
    [10]JIANG Shuping, HU Xuebing. The numerical analysis of constructional mechanical responses of Yangzong tunnel[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 178-182.
  • Cited by

    Periodical cited type(4)

    1. 肖智勇,孙小翔,王刚,王铭震,贾文雯,姜枫,郑程程. 气体压差影响下的煤渗透率非平衡演化全过程模型. 岩土工程学报. 2025(02): 355-364 . 本站查看
    2. 肖智勇,王刚,刘杰,邓华锋,郑程程,姜枫. 基于等效裂隙的表观渗透率模型改进及变滑脱效应研究. 岩土力学. 2025(05): 1466-1476+1488 .
    3. 肖智勇,王刚,刘杰,邓华锋,姜枫,郑程程. 热–流–固耦合作用下含水煤层渗透率模型建立及应用研究. 岩石力学与工程学报. 2024(12): 3044-3057 .
    4. 王刚,王铭震,肖智勇,孙小翔,贾文雯,姜枫,郑程程. 考虑基质吸附变形特性的煤岩渗透率演化研究. 煤炭科学技术. 2024(12): 193-203 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return