• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Ming-jing, LI Chen-hui, LIU Wei, ZHANG An, ZHANG Xue-wen. Extension and compression tests mechanical behaviors of bonded granules with different bond widths[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 12-16. DOI: 10.11779/CJGE2018S2003
Citation: JIANG Ming-jing, LI Chen-hui, LIU Wei, ZHANG An, ZHANG Xue-wen. Extension and compression tests mechanical behaviors of bonded granules with different bond widths[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 12-16. DOI: 10.11779/CJGE2018S2003

Extension and compression tests mechanical behaviors of bonded granules with different bond widths

More Information
  • Received Date: July 21, 2018
  • Published Date: October 29, 2018
  • In order to establish a new bond failure criterion considering different bonded widths to be used in three-dimensional distinct element modelling, another three kinds of bond widths (i.e., 8, 12 and 14 mm) between granules are investigated based on the previous work. Then, a series of extension and compression tests are carried out on cemented aluminum balls with three different bond widths, from which the bond failure criteria are obtained considering different bonded widths under tension and compression. The test results show that the tensile and compressive strengths both increase non-linearly with the bond width. The curves of the relationship between the tension and normal displacement exhibit elastic brittle failure. However, those between the compression and normal displacement are influenced by the bond width. The curves more probably show plastic failure if the bond width is larger, while those of the specimens with smaller bond width more probably show brittle-plastic failure.
  • [1]
    CUCCOVILLO T, COOP M.On the mechanics of structured sands[J]. Géotechnique, 1999,49(6): 741-760.
    [2]
    COOP M R, ATKINSON J H.The mechanics of cemented carbonate sands[J]. Géotechnique, 1993, 43(1): 53-67.
    [3]
    HUANG J T, AIREY D W.Properties of artificially cemented carbonate sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(6): 492-499.
    [4]
    CUNDALL P A, STRACK O D L. The distinct numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
    [5]
    POTYONDY D O, CUNDALL P A.A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364.
    [6]
    OBERMAYR M, DRESSLER K, VRETTOS C, et al.A bonded-particle model for cemented sand[J]. Computers and Geotechnics, 2013, 49(49): 299-313.
    [7]
    JIANG M J, YU H S, HARRIS D.Bond rolling resistance and its effect on yielding of bonded granulates by DEM analyses[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 30(8): 723-761.
    [8]
    DELENNE J Y, YOUSSOUFI M S E, CHERBLANC F, et al. Mechanical behaviour and failure of cohesive granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(15): 1577-1594.
    [9]
    MULLER P, TOMAS J.Investigation on the compression behavior of tetrahedral agglomerates[J]. ChemieIngenieur Technik, 2015, 87(7): 966-975.
    [10]
    蒋明镜, 孙渝刚, 李立青. 复杂应力下两种胶结颗粒微观力学模型的试验研究[J]. 岩土工程学报, 2011, 33(3): 354-360.
    (JIANG Ming-jing, SUN Yu-gang, LI Li-qing.Experimental study on micro-mechanical model for two different bonded granules under complex stress conditions[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 354-360. (in Chinese))
    [11]
    蒋明镜, 周雅萍, 陈贺. 不同胶结厚度下粒间胶结力学特性的试验研究[J]. 岩土力学, 2013, 34(5): 1264-1273.
    (JIANG Ming-jing, ZHOU Ya-ping, CHEN He.Experimental study of mechanical behaviors of bonded granules under different bond thicknesses[J]. Rock and Soil Mechanics, 2013, 34(5): 1264-1273. (in Chinese))
    [12]
    蒋明镜, 张宁, 金树楼. 不同胶结宽度粒间胶结特性试验研究[J]. 岩土力学, 2015, 36(4): 928-936.
    (JIANG Ming-jing, ZHANG Ning, JIN Shu-lou.Experimental study of mechanical behaviors of bonded granules with different bond widths[J]. Rock & Soil Mechanics, 2015, 36(4): 928-936. (in Chinese))
    [13]
    蒋明镜, 金树楼, 刘蔚, 等. 粒间胶结接触力学特性的三维试验研究[J]. 岩土力学, 2015, 36(增刊1): 9-13.
    (JIANG Ming-jing, JIN Shu-lou, LIU Wei, et al.three-dimensional experimental study of mechanical behaviors of bonded granules[J]. Rock & Soil Mechanics, 2015, 36(S1): 9-13. (in Chinese))
    [14]
    金树楼. 结构性砂土三维微观接触力学试验及离散元数值模拟[D]. 上海: 同济大学, 2016.
    (JIN Shu-lou.Three dimension experimental and numerical study on micro-and macro- mechanical behavior of structural sands[D]. Shanghai: Tongji University, 2016. (in Chinese))
    [15]
    张宁. 岩石化学风化微观机理及岩质边坡稳定性的离散元分析[D]. 上海: 同济大学, 2014.
    (ZHANG Ning.DEM analysis of the micro-mechanical behavior of chemical weathering on the rock and stability of rock slope[D]. Shanghai: Tongji University, 2014. (in Chinese))
    [16]
    申志福. 深海能源土力学特性三维多尺度数值模拟[D]. 上海: 同济大学, 2016.
    (SHEN Zhi-fu.Three-dimensional muti-scale numerical simulations of the mechanical behavior of methane hydrate bearing sediments[D]. Shanghai: Tongji University, 2016. (in Chinese))
  • Cited by

    Periodical cited type(7)

    1. 赵兵,申思,丁冠群. 浅析土工格室生态护坡抗冲刷性能——以简阳空港大道项目为例. 四川建筑. 2024(05): 281-283 .
    2. 孙健,杨广庆,左政,梁训美,王奇伟. 熔接型聚丙烯土工格室拉伸特性试验研究. 科学技术与工程. 2023(20): 8788-8794 .
    3. 王志杰,齐逸飞,杨广庆,蔡永明,刘伟超. 土工格室加筋碎石复合体大型三轴试验研究. 铁道学报. 2023(09): 161-169 .
    4. 李丹,董建刚,胡波,李波. 土工格室加筋砂土大型叠环式剪切试验研究. 人民长江. 2023(12): 211-217 .
    5. 左政,杨广庆,王贺,许淋颖,靳静,梁训美. 土工格室规格对加筋土剪切性能的影响. 岩土工程学报. 2022(06): 1053-1060 . 本站查看
    6. 王艳坤,刘杰,宋玲,张兴疆,高斌. 土工格室加固风积沙地基模型试验研究. 公路交通科技. 2022(07): 40-48 .
    7. 蒲昌瑜,刘欣超,苏鹏辉,杨广庆. HDPE焊接型土工格室结点拉伸力学特性试验研究. 交通世界. 2022(28): 55-57 .

    Other cited types(10)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return