KONG Yu-xia, SHENG Fei-fan, WANG Hui-juan. Stress-dilatancy properties for fiber-reinforced sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2249-2256. DOI: 10.11779/CJGE201812012
    Citation: KONG Yu-xia, SHENG Fei-fan, WANG Hui-juan. Stress-dilatancy properties for fiber-reinforced sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2249-2256. DOI: 10.11779/CJGE201812012

    Stress-dilatancy properties for fiber-reinforced sand

    More Information
    • Received Date: September 03, 2017
    • Published Date: December 24, 2018
    • It is observed that randomly distributed polypropylene fibers act to interlock particles and thus improve the mechanical behavior of the reinforced soils. The polypropylene fiber inclusion clearly increases the shear strength of soils, and reduces the loss of post-peak strength. The stress-dilatancy relationship can be employed as the foundation to develop a constitutive model for polypropylene fiber-reinforced (PFR) soils. In this study, a number of conventional triaxial compression tests are carried out to investigate the effect of randomly distributed fiber reinforcements on the stress-dilatancy relationship of Nanjing sand. A new parameter, σFR, representing the reinforcing effect of fibers in Mohr-circle space is introduced to describe the behaviors of PFR sand. When a polypropylene fiber-soil assembly dilates in response to the applied shear deformations, the work done by the driving stress will be dissipated by the particle sliding and the fiber deformation. The work dissipated by the polypropylene fiber deformation can be expressed by introducing σFR. Based on the minimum rate of internal work assumption, the stress-dilatancy relationship is deduced for fiber-reinforced sand. It is shown that the predicted results are in good agreement with the experimental ones.
    • [1]
      WALDRON L J.Shear resistance of root-permeated homogeneous and stratified soil[C]// Soil Science Society of America Proceedings. 1977, 41: 843-849.
      [2]
      PARK T, TAN A S.Enhanced performance of reinforced soil walls by the inclusion of short fiber[J]. Geotext Geomembr, 2005, 23(4): 348-361.
      [3]
      施斌, 唐朝生, 蔡奕. 聚丙烯纤维加筋土工程性质分析[J]. 工程地质学报, 2006(增刊1): 320-325.
      (SHI Bin, TANG Chao-sheng, CAI Yi, et al.Analysis of engineering properties of polypropylene reinforced soil[J]. Journal of Engineering Geology, 2006(S1): 320-325. (in Chinese))
      [4]
      BHARDWAJ K, MANDAL N.Study on polypropylene fiber reinforced fly ash slopes[C]// 12th Int conf of int assoc for comp meth and advan in geomech (IACMAG). Goa, 2008.
      [5]
      JIANG H, CAI Y, LIU J.Engineering properties of soils reinforced by short discrete polypropylene fiber[J]. J Mater Civ Eng, 2010, 22(12): 1315-1322.
      [6]
      GRAY H, AL-REFEAI T.Behavior of fabric versus fiber reinforced sand[J]. J Geotech Engrg ASCE, 1986, 112(8): 804-820.
      [7]
      CONSOLI N C, HEINECK K S, CASAGRANDE M D T, et al. Shear strength behavior of fiber-reinforced sand considering triaxial tests under distinct stress paths[J]. J Geotech Geoenviron Eng, 2007, 133(11): 1466-1469.
      [8]
      MICHALOWSKI R L.Limit analysis with anisotropic fiber-reinforced soil[J]. Géotechnique, 2008, 58(6): 489-501.
      [9]
      CONSOLI N C, CASAGRANDE M D T, COOP M R. Performance of fibre-reinforced sand at large shear strains[J]. Géotechnique, 2007, 57(9): 751-756.
      [10]
      SANTOS S D, CONSOLI N C, BAUDET B A.The mechanics of fibre-reinforced sand[J]. Géotechnique, 2010, 61(10): 791-799.
      [11]
      MICHALOWSKI R L, ZHAO A.Failure of fiber-reinforced granular soils[J]. J Geotech Engrg, 1996, 122(3): 226-234.
      [12]
      MICHALOWSKI R L, CERMAK J.Triaxial compression of sand reinforced with fibers[J]. J Geotech Geoenviron Eng, 2003, 129(2): 125-136.
      [13]
      MICHALOWSKI R L.Limit analysis with anisotropic fiber- reinforced soil[J]. Géotechnique, 2008, 58(6): 489-501.
      [14]
      ZORNBERG J G.Discrete framework for limit equilibrium analysis of fiber-reinforced soil[J]. Géotechnique, 2002, 52(8): 593-604.
      [15]
      LI C.Mechanical response of fiber-reinforced soil[D]. Austin: Univ of Texas, 2005.
      [16]
      NAJJAR S, SADEK S. ALCOVERO A.Quantification of model uncertainty in shear strength predictions for fiber-reinforced sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(1): 116-133.
      [17]
      REYNOLDS O. On the dilatancy of media composed of rigid particles in contact with experimental illustrations[J]. Philosophical Magazine, 1885, 20(5): 469-481.
      [18]
      张建民. 砂土的可逆性和不可逆性剪胀规律[J]. 岩土工程学报, 2000, 22(1): 12-17.
      (ZHANG Jian-min.A constitutive model for evaluating small to large cyclic strains of saturated sand during liquefaction process[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 546-552. (in Chinese))
      [19]
      罗汀, 高智伟, 万征, 等. 土剪胀性的应力路径相关规律及其模拟[J]. 力学学报, 2010, 42(1): 93-101.
      (LUO Ding, GAO Zhi-wei, WAN Zheng, et al.Influence of the stress path on dilatancy of soils and its modeling[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(1): 93-101. (in Chinese))
      [20]
      姚仰平, 张丙印, 朱俊高. 土的基本特性、本构关系及数值模拟研究综述[J]. 土木工程学报. 2012, 45(3): 127-150.
      (YAO Yang-ping, ZHANG Bing-yin, ZHU Jun-gao.Behaviors, constitutive models and numerical simulation of soils[J]. China Civil Engineering Journal, 2012, 45(3): 127-150. (in Chinese))
      [21]
      ROWE P W.The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[C]// Proceedings of the Royal Society of London, Series A. 1962, 269: 500-527.
      [22]
      包承纲, 丁金华. 纤维加筋土的研究和工程应用[J]. 土工基础, 2012, 26(1): 80-83.
      (BAO Cheng-gang, DING Jin-hua.Researches and applications of fiber reinforced soils[J]. Soil Engineering and Foundation, 2012, 26(1): 80-83. (in Chinese))
      [23]
      KAUR A, KUMAR A.Bearing capacity of eccentrically- obliquely loaded footings resting on fiber-reinforced sand[J]. Geotechnical and Geological Engineering, 2014, 32(1): 151-166.
      [24]
      MAHER M H, HO Y C.Mechanical properties of kaolinite/fiber soil composite[J]. J Geotech Engrg, 1994, 120(8): 1381-1393.
      [25]
      李广信, 陈轮, 郑继勤, 等. 纤维加筋黏性土的试验研究[J]. 水利学报, 1995(6): 31-36.
      (LI Guang-xin, CHEN Lun, ZHENG Ji-Qin.Experimental study on fiber-reinforced cohesive soil[J]. Journal of Hydraulic Engineering, 1995(6): 31-36. (in Chinese))
      [26]
      ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A.Yielding of clay in states wetter than critical[J]. Géotechnique, 1963, 13(3): 211-240.
      [27]
      ROSCOE K H, BURLAND J B.“On the generalized stress-strain behavior of “Wet” clay,” in Engineering Plasticity[M]. Cambridge: Cambridge University Press, 1968: 535-609.
      [28]
      NAKAI T.Isotropic hardening elastioplastic model for sand considering the stress path dependency in three-dimensional stresses[J]. Soils and Foundations, 1989, 29(1): 119-137
      [29]
      WOOD D Muir.Soil behaviour and critical state soil mechanics[M]. Cambridge: Cambridge University Press, 1990.
      [30]
      DIAMBRA A, IBRAIM E, WOOD D Muir, et al.Fibre reinforced sands: experiments and modeling[J]. Geotextoles and Geomembtanes, 2010, 28: 238-250.
    • Cited by

      Periodical cited type(3)

      1. 胡丰慧,方祥位,申春妮,姚志华,陈正汉. 基于CT-三轴试验的珊瑚砂试样细观孔隙结构演化特性. 岩土工程学报. 2025(05): 936-947 . 本站查看
      2. 王凯,付强,徐超,艾子博,王磊,舒龙勇. 考虑射束硬化的煤岩CT数据阈值分割方法及应用. 煤田地质与勘探. 2023(04): 11-22 .
      3. 黄献文,赵光明,黄顺杰,王泽洲,王雪松,唐楚轩. 基于堆积颗粒几何特征的多尺度渗透注浆扩散半径预测. 岩石力学与工程学报. 2023(08): 2028-2040 .

      Other cited types(2)

    Catalog

      Article views (325) PDF downloads (203) Cited by(5)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return