• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Yu, CHEN Wen-hua. Generalized Vesic solutions for interaction of buried beams and transversely isotropic layered soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2241-2248. DOI: 10.11779/CJGE201812011
Citation: WANG Yu, CHEN Wen-hua. Generalized Vesic solutions for interaction of buried beams and transversely isotropic layered soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2241-2248. DOI: 10.11779/CJGE201812011

Generalized Vesic solutions for interaction of buried beams and transversely isotropic layered soils

More Information
  • Received Date: August 13, 2017
  • Published Date: December 24, 2018
  • According to the transversely isotropic elasticity theory and the transfer matrix method, the generalized Vesic solutions for the coefficient of subgrade reaction are obtained by considering the buried depth of beams and the transverse isotropy and layered properties of soils. The rationality and accuracy of the proposed method are validated by numerical examples, and the influences of variation of some parameters on the coefficient of subgrade reaction are analyzed. The results show that the coefficient of subgrade reaction k increases with the increase of the buried depth h to the maximum value, about 2.05 ~ 2.25 times the surface. It decreases with the increase of total soil thickness H and increases with the increase of the transversely isotropic parameter r. When h is 0 or H exceeds 100b or r is 1, the proposed solutions are degenerated to the Vesic solution. In the condition that the weighted-average elastic moduli of soils are the same, the harder the top soil layer is, the larger k is, and the smaller the deviation is when the generalized Vesic solution is used to analyze the finite beams.
  • [1]
    BIOT M A.Bending of an infinite beam on an elastic foundation[J]. Journal of Applied Mechanics, ASME, 1937, 59: A1-A7.
    [2]
    TERZAGHI K.Evaluation of coefficients of subgrade reaction[J]. Géotechnique, 1955, 5(4): 297-326.
    [3]
    VESIC A B.Bending of beams resting on isotropic elastic solid[J]. Journal of the Engineering Mechanics Division, ASCE, 1961, 87(2): 35-53.
    [4]
    俞剑, 张陈蓉, 黄茂松. 被动状态下地埋管线的地基模量[J]. 岩石力学与工程学报, 2012, 31(1): 123-132.
    (YU Jian, ZHANG Chen-rong, HUANG Mao-song.Subgrade modulus of underground pipelines subjected to soil movements[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(1): 123-132. (in Chinese))
    [5]
    DALOGLU A T, VALLABHAN C V G. Values of k for slab on Winkler foundation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(5): 463-471.
    [6]
    SHELDON T, SEZEN H, MOORE I D.Beam-on-springs modeling of jointed pipe culverts[J]. Journal of Performance of Constructed Facilities, 2016, 30(2): 1-9.
    [7]
    艾智勇, 张逸帆. 层状横观各向同性地基与刚性条形基础共同作用分析[J]. 岩土工程学报, 2014, 36(4): 752-756.
    (AI Zhi-yong, ZHANG Yi-fan.Interactive analysis of a rigid strip footing on transversely isotropic layered soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 752-756. (in Chinese))
    [8]
    LIANG R Y, SHATNAWI E S.Estimating subgrade reaction modulus for transversely isotropic rock medium[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(8): 1077-1085.
    [9]
    王春玲, 丁欢, 刘俊卿. 层状横观各向同性地基上异性矩形薄板的弯曲解析解[J]. 计算力学学报, 2014, 31(1): 78-83.
    (WANG Chun-ling, DING Huan, LIU Jun-qing.Bending analytic solutions of anisotropic rectangular plates with four free edges on the transversely isotropic elastic multilayered subgrade[J]. Chinese Journal of Computational Mechanics, 2014, 31(1): 78-83. (in Chinese))
    [10]
    AI Z Y, FENG D L.BEM analysis of laterally loaded pile groups in multi-layered transversely isotropic soils[J]. Engineering Analysis with Boundary Elements, 2014, 44: 143-151.
    [11]
    韩泽军, 林皋, 周小文, 等. 横观各向同性层状地基上埋置刚性条带基础动力刚度矩阵求解[J]. 岩土工程学报, 2016, 38(6): 1117-1124.
    (HAN Ze-jun, LIN Gao, ZHOU Xiao-wen, et al.Solution of dynamic stiffness matrix for rigid strip foundations embedded in layered transversely isotropic soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1117-1124. (in Chinese))
    [12]
    韩泽军, 林皋, 周小文. 三维横观各向同性层状地基任意点格林函数求解[J]. 岩土工程学报, 2016, 38(12): 2218-2225.
    (HAN Ze-jun, LIN Gao, ZHOU Xiao-wen.Solution to Green’s functions for arbitray points in 3D cross-anisotropic multi-layered soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2218-2225. (in Chinese))
    [13]
    钟阳, 殷建华. 弹性层状体的求解方法[M]. 北京: 科学出版社, 2007: 212-226.
    (ZHONG Yang, YIN Jian-hua.Solving method of elastic layered body[M]. Beijing: Science Press, 2007: 212-226. (in Chinese))
    [14]
    AI Z Y, LI Z X, CHENG Y C.BEM analysis of elastic foundation beams on multilayered isotropic soils[J]. Soils and Foundations, 2014, 54(4): 667-674.
  • Cited by

    Periodical cited type(6)

    1. 王策. 既有结构基础下方隧道开挖扰动破坏及其所需支护力预测. 城市轨道交通研究. 2024(02): 130-134 .
    2. 王超,朱春洲,邹金锋,刘波,张晗秋,马江锋. 盾构隧道近接斜交侧穿桥梁桩基变形计算方法. 浙江大学学报(工学版). 2024(03): 557-569 .
    3. 魏纲,木志远,齐永洁,郭丙来,项鹏飞. 考虑地层损失的隔离桩对基坑旁侧盾构隧道变形保护研究. 岩土工程学报. 2024(03): 480-489 . 本站查看
    4. 冯国辉,窦炳珺,张高锋,丁士龙,徐长节. 隧道开挖引起水平向位移被动桩的简化计算方法. 土木与环境工程学报(中英文). 2021(02): 10-18 .
    5. 冯国辉,周逊泉,何庆亮,徐长节. 隔离桩对盾构掘进引起邻近高铁桩基水平位移的影响分析. 土木与环境工程学报(中英文). 2020(04): 28-35 .
    6. 杨文伟,姜远达. 基于ABAQUS软件的桩水平承载特性研究及“m”法应用. 甘肃科技. 2019(09): 104-109 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return