• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Yong-qiang, SHENG Qian, LUO Hong-xing, LENG Xian-lun, FU Xiao-dong, LI Na-na. Dynamic constitutive model for subloading surface of rock materials considering rate effect[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1818-1826. DOI: 10.11779/CJGE201810008
Citation: ZHOU Yong-qiang, SHENG Qian, LUO Hong-xing, LENG Xian-lun, FU Xiao-dong, LI Na-na. Dynamic constitutive model for subloading surface of rock materials considering rate effect[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1818-1826. DOI: 10.11779/CJGE201810008

Dynamic constitutive model for subloading surface of rock materials considering rate effect

More Information
  • Received Date: July 19, 2017
  • Published Date: October 24, 2018
  • In order to reflect the characteristics of the hysteresis loop under cyclic loading and the rate effect under dynamic loading of the rock materials, firstly, based on the theory of subloading surface, the stress-path model for the subloading surface considering Drucker-Prager criterion is proposed. Secondly, on this basis, the rate effect of rock materials is analyzed. The rate effect of stiffness is considered in the elastic modulus and the rate effect of strength is taken into account in the Drucker-Prager criterion, and then the dynamic constitutive model for subloading surface of rock materials is established. Finally, through the self-programming, the dynamic constitutive model for the sub-loading surface of the rock materials is implanted, and the mechanical response of the rock materials under dynamic loads is simulated. The results show that the stress path model, compared with the Drucker-Prager criterion, can describe the Massing effect and the ratchet effect of basalt under cyclic loading, and reveal the developmental pattern of basalt. Through the simulation of dynamic uniaxial loading and cyclic loading by using the dynamic model, it is found that the larger the strain rate is, the larger the elastic modulus is and the smaller the strain is, which is in accordance with the mechanical properties of the rock during dynamic loading. Under the seismic load, the stress-strain curve of the rock also exhibits the hysteresis loop and rate effect. The seismic load has the equivalent cyclic load and the form of dynamic load, and the dynamic constitutive model for subloading surface is feasible to simulate the mechanical properties of the rock materials under seismic loads.
  • [1]
    宫凤强, 陆道辉, 李夕兵, 等. 不同应变率下砂岩动态强度准则的试验研究[J]. 岩土力学, 2013, 34(9): 2433-2441.
    (GONG Feng-qiang, LU Dao-hui, LI Xi-bing, et al.Experimental research of sandstone dynamic strength criterion under different strain rates[J]. Rock and Soil Mechanics, 2013, 34(9): 2433-2441. (in Chinese))
    [2]
    李海波, 王建伟, 李俊如, 等. 单轴压缩下软岩的动态力学特性试验研究[J]. 岩土力学, 2004, 25(1): 1-4.
    (LI Hai-bo, WANG Jian-wei, LI Jun-ru, et al.Mechanical properties of soft rock under dynamic uniaxial compression[J]. Rock and Soil Mechanics, 2004, 25(1): 1-4. (in Chinese))
    [3]
    梁昌玉, 李晓, 李守定, 等. 岩石静态和准动态加载应变率的界限值研究[J]. 岩石力学与工程学报, 2012, 31(6): 1156-1161.
    (LIANG Chang-yu, LI Xiao, LI Shou-ding, et al.Study of strain rates threshold value between static loading and quasi-dynamic loading of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1156-1161. (in Chinese))
    [4]
    吴绵拔, 刘远惠. 中等应变速率对岩石力学特性的影响[J].岩土力学, 1980, 1: 51-58.
    (WU Mian-bo, LIU Yuan-hui.The effect of intermediate strain rates on Mechanical properties of rock[J]. Rock and Soil Mechanics, 1980, 1: 51-58. (in Chinese))
    [5]
    张玉敏. 大型地下洞室群地震响应特征研究[D]. 北京: 中国科学院研究生院, 2010.
    (ZHANG Yu-min.Study on response characteristics of large underground cavern group under earthquake[D]. Beijing: Graduate School of the Chinese Academy of Sciences, 2010. (in Chinese))
    [6]
    李海波, 张君伟, 邵蔚, 等. Bukit Timah花岗岩的动态拉伸力学特性实验研究[J]. 岩土力学, 2002, 23(增刊): 1-4.
    (LI Hai-bo, ZHANG Jun-wei, SHAO Wei, et al.Mechanical Properties of Bukit Timah granite under dynamic tension[J]. Rock and Soil Mechanics, 2002, 23(S0): 1-4. (in Chinese))
    [7]
    LI X B, LOK T S, ZHAO J.Dynamic characteristics of granite subjected to intermediate loading rate[J]. Rock Mechanic and Rock Engineering, 2005, 38(1): 21-39.
    [8]
    葛修润, 卢应发. 循环荷载作用下岩石疲劳破坏和不可逆变形问题的探讨[J]. 岩土工程学报, 1992, 14(3): 56-60.
    (GE Xiu-ru, LU Ying-fa.Discussion on fatigue damage and irreversible deformation of rock under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(3): 56-60. (in Chinese))
    [9]
    钱七虎, 戚承志. 岩石、岩体的动力强度与动力破坏准则[J]. 同济大学学报(自然科学版), 2008, 36(12): 1599-1605.
    (QIAN Qi-hu, QI Cheng-zhi.Dynamic strength and dynamic fracture criteria of rock and rock mass[J]. Journal of Tongji University (Natural Science), 2008, 36(12): 1599-1605. (in Chinese))
    [10]
    LINDHOLM U S, YEAKLEY L M, NAGY A.The dynamic strength and fracture properties of dresser basalt[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1974, 11(2): 181-191.
    [11]
    PERZYNA P.Fundamental problems in visco-plasticity[J]. Advances in Applied Mechanics, 1966, 9: 243-377.
    [12]
    HASHIGUCHI K.Generalized plastic flow rule[J]. International Journal of Plasticity, 2005, 21: 321-351.
    [13]
    孔亮, 花丽坤, 王燕昌. 次加载面理论及其在土体循环塑性模型中的应用[J]. 宁夏大学学报(自然科学版), 2003, 24(1): 50-56.
    (KONG Liang, HUA Li-kun, WANG Yan-chang.The subloading surface theory and its application to the cyclic plastic model for soil[J]. Journal of Ningxia University (Natural Science Edition), 2003, 24(1): 50-56. (in Chinese))
    [14]
    伍大鹏. 混凝土在循环荷载作用下的次加载面应力路径模型[D]. 北京: 北京交通大学, 2012.
    (WU Da-peng.The sub-loading surface model of concrete under cyclic loading [D]. Beijing: Beijing Jiaotong University, 2012. (in Chinese))
    [15]
    FU Yu-kai, IWATA Maiko, DING Wen-qi, et, al. An elastoplastic model for soft sedimentary rock considering inherent anisotropy and confining-stress dependency[J]. Soils and Foundations, 2012, 52(4): 575-589.
    [16]
    周永强, 盛谦, 冷先伦, 等. 基于循环加卸载的次加载面模型在岩石中的初步应用[J]. 岩石力学与工程学报, 2015, 34(10): 2073-2082.
    (ZHOU Yong-qiang, SHENG Qian, LENG Xian-lun, et al.Preliminary application of subloading surface to cyclic plastic model for rock under cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(10): 2073-2082. (in Chinese))
    [17]
    白冰, 李小春, 石露, 等. 基于虚强度参数的塑性硬化模式[J]. 长江科学院院报, 2012, 29(8): 24-28.
    (BAI Bing, LI Xiao-chun, SHI Lu, et al.A plastic hardening mode based on virtual strength parameters[J]. Journal of Yangtze River Scientific Research Institute, 2012, 29(8): 24-28. (in Chinese))
    [18]
    赵坚, 李海波. 莫尔-库仑和霍克-布朗强度准则用于评估脆性岩石动态强度的适用性[J]. 岩石力学与工程学报, 2003, 22(2): 171-176.
    (ZHAO Jian, LI Hai-bo.Estimating the dynamic strength of rock using Mohr-Coulomb and Hoek-Brown criteria[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 171-176. (in Chinese))
    [19]
    戚承志, 钱七虎. 岩石等脆性材料动力强度依赖应变率的物理机制[J]. 岩石力学与工程学报, 2003, 22(2): 177-181.
    (QI Cheng-zhi, QIAN Qi-hu.Physical mechanism of dependence of material strength on strain rate for rock-like material[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 177-181. (in Chinese))
    [20]
    宋玉普. 混凝土的动力本构关系和破坏准则[M]. 北京: 科学出版社, 2013.
    (SONG Yu-pu.Dynamic constitutive relation and failure criterion of concrete[M]. Beijing: Science Press, 2013. (in Chinese))
    [21]
    李夕兵, 左宇军, 马春德. 中应变率下动静组合加载岩石的本构模型[J].岩石力学与工程学报, 2006, 25(5): 865-874.
    (LI Xi-bing, ZUO Yu-jun, MA Chun-de.Constitutive model of rock under coupled static-dynamic loading with intermediate strain rate[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 865-874. (in Chinese))
    [22]
    JOHNSON G R, COOK W H.A constitutive model and data for metals subjected to large strain, high strain rates and high temperatures[C]// Proc 7th Int Symp Ballistics, Am Def Pre Org(ADPA). The Hague, 1983: 541-547.
    [23]
    宫凤强, 司雪峰, 李夕兵, 等. 基于应变率效应的岩石动态Mohr-Coulomb准则和Hoek-Brown准则研究[J]. 中国有色金属学报, 2016, 26(8): 1763-1773.
    (GONG Feng-qiang, SI Xue-feng, LI Xi-bing, et al.Rock dynamic Mohr-Coulomb and Hoek-Brown criteria based on strain rate effect[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(8): 1763-1773. (in Chinese))
  • Related Articles

    [1]CUI Chunyi, XU Minze, XU Chengshun, ZHAO Jingtong, LIU Hailong, MENG Kun. Seismic fragility analysis of subway station structures considering statistical uncertainty of seismic demands[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 453-462. DOI: 10.11779/CJGE20230980
    [2]ZHANG Chenlong, ZHANG Dongming, HUANG Zhongkai, HUANG Hongwei. Resilience assessment method for subway stations considering uncertainty of seismic intensity[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 164-172. DOI: 10.11779/CJGE20231153
    [3]LI Jinqiang, ZHONG Zilan, SHEN Jiaxu, ZHANG Bu, ZHANG Yabo, DU Xiuli. Longitudinal seismic fragility analysis of utility tunnel structures based on IDA method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1622-1631. DOI: 10.11779/CJGE20230397
    [4]DAI Xuan, MA Yunxiang, WEI Shaowei, WEI Peiyong, HUO Haifeng, CAI Degou, LI Zhao. Seismic performance analysis of frame beams-reinforced slope under different earthquake intensities[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 147-152. DOI: 10.11779/CJGE2023S20019
    [5]QIU Dapeng, CHEN Jianyun, WANG Wenming, CAO Xiangyu. Fragility analysis of underground large-scale frame structures considering seismic effects of vertical earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2537-2546. DOI: 10.11779/CJGE20221053
    [6]ZHEN Libin, SHI Yuebo, ZHONG Zilan, DU Xiuli, LUO Wenlin. Efficient seismic fragility of underground structures using endurance time analysis method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 777-784. DOI: 10.11779/CJGE20220188
    [7]MENG Chang, TANG Liang. Seismic fragility analysis of pile-supported wharf in nearshore liquefiable ground[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2274-2282. DOI: 10.11779/CJGE202112014
    [8]ZHONG Zi-lan, SHEN Yi-yao, HAO Ya-ru, LI Li-yun, DU Xiu-li. Seismic fragility analysis of two-story and three-span metro station structures based on IDA method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 916-924. DOI: 10.11779/CJGE202005014
    [9]JIN Cong-cong, CHI Shi-chun, NIE Zhang-bo. Seismic safety analysis of high earth-rockfill dams based on seismic deformational fragility[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 334-343. DOI: 10.11779/CJGE202002015
    [10]ZHU Hong-wei, YAO Ling-kan, LAI Jun. Seismic vulnerability assessment of gravity retaining walls based on performance[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 150-157. DOI: 10.11779/CJGE202001017

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return