Citation: | ZHOU Yong-qiang, SHENG Qian, LUO Hong-xing, LENG Xian-lun, FU Xiao-dong, LI Na-na. Dynamic constitutive model for subloading surface of rock materials considering rate effect[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1818-1826. DOI: 10.11779/CJGE201810008 |
[1] |
宫凤强, 陆道辉, 李夕兵, 等. 不同应变率下砂岩动态强度准则的试验研究[J]. 岩土力学, 2013, 34(9): 2433-2441.
(GONG Feng-qiang, LU Dao-hui, LI Xi-bing, et al.Experimental research of sandstone dynamic strength criterion under different strain rates[J]. Rock and Soil Mechanics, 2013, 34(9): 2433-2441. (in Chinese)) |
[2] |
李海波, 王建伟, 李俊如, 等. 单轴压缩下软岩的动态力学特性试验研究[J]. 岩土力学, 2004, 25(1): 1-4.
(LI Hai-bo, WANG Jian-wei, LI Jun-ru, et al.Mechanical properties of soft rock under dynamic uniaxial compression[J]. Rock and Soil Mechanics, 2004, 25(1): 1-4. (in Chinese)) |
[3] |
梁昌玉, 李晓, 李守定, 等. 岩石静态和准动态加载应变率的界限值研究[J]. 岩石力学与工程学报, 2012, 31(6): 1156-1161.
(LIANG Chang-yu, LI Xiao, LI Shou-ding, et al.Study of strain rates threshold value between static loading and quasi-dynamic loading of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1156-1161. (in Chinese)) |
[4] |
吴绵拔, 刘远惠. 中等应变速率对岩石力学特性的影响[J].岩土力学, 1980, 1: 51-58.
(WU Mian-bo, LIU Yuan-hui.The effect of intermediate strain rates on Mechanical properties of rock[J]. Rock and Soil Mechanics, 1980, 1: 51-58. (in Chinese)) |
[5] |
张玉敏. 大型地下洞室群地震响应特征研究[D]. 北京: 中国科学院研究生院, 2010.
(ZHANG Yu-min.Study on response characteristics of large underground cavern group under earthquake[D]. Beijing: Graduate School of the Chinese Academy of Sciences, 2010. (in Chinese)) |
[6] |
李海波, 张君伟, 邵蔚, 等. Bukit Timah花岗岩的动态拉伸力学特性实验研究[J]. 岩土力学, 2002, 23(增刊): 1-4.
(LI Hai-bo, ZHANG Jun-wei, SHAO Wei, et al.Mechanical Properties of Bukit Timah granite under dynamic tension[J]. Rock and Soil Mechanics, 2002, 23(S0): 1-4. (in Chinese)) |
[7] |
LI X B, LOK T S, ZHAO J.Dynamic characteristics of granite subjected to intermediate loading rate[J]. Rock Mechanic and Rock Engineering, 2005, 38(1): 21-39.
|
[8] |
葛修润, 卢应发. 循环荷载作用下岩石疲劳破坏和不可逆变形问题的探讨[J]. 岩土工程学报, 1992, 14(3): 56-60.
(GE Xiu-ru, LU Ying-fa.Discussion on fatigue damage and irreversible deformation of rock under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(3): 56-60. (in Chinese)) |
[9] |
钱七虎, 戚承志. 岩石、岩体的动力强度与动力破坏准则[J]. 同济大学学报(自然科学版), 2008, 36(12): 1599-1605.
(QIAN Qi-hu, QI Cheng-zhi.Dynamic strength and dynamic fracture criteria of rock and rock mass[J]. Journal of Tongji University (Natural Science), 2008, 36(12): 1599-1605. (in Chinese)) |
[10] |
LINDHOLM U S, YEAKLEY L M, NAGY A.The dynamic strength and fracture properties of dresser basalt[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1974, 11(2): 181-191.
|
[11] |
PERZYNA P.Fundamental problems in visco-plasticity[J]. Advances in Applied Mechanics, 1966, 9: 243-377.
|
[12] |
HASHIGUCHI K.Generalized plastic flow rule[J]. International Journal of Plasticity, 2005, 21: 321-351.
|
[13] |
孔亮, 花丽坤, 王燕昌. 次加载面理论及其在土体循环塑性模型中的应用[J]. 宁夏大学学报(自然科学版), 2003, 24(1): 50-56.
(KONG Liang, HUA Li-kun, WANG Yan-chang.The subloading surface theory and its application to the cyclic plastic model for soil[J]. Journal of Ningxia University (Natural Science Edition), 2003, 24(1): 50-56. (in Chinese)) |
[14] |
伍大鹏. 混凝土在循环荷载作用下的次加载面应力路径模型[D]. 北京: 北京交通大学, 2012.
(WU Da-peng.The sub-loading surface model of concrete under cyclic loading [D]. Beijing: Beijing Jiaotong University, 2012. (in Chinese)) |
[15] |
FU Yu-kai, IWATA Maiko, DING Wen-qi, et, al. An elastoplastic model for soft sedimentary rock considering inherent anisotropy and confining-stress dependency[J]. Soils and Foundations, 2012, 52(4): 575-589.
|
[16] |
周永强, 盛谦, 冷先伦, 等. 基于循环加卸载的次加载面模型在岩石中的初步应用[J]. 岩石力学与工程学报, 2015, 34(10): 2073-2082.
(ZHOU Yong-qiang, SHENG Qian, LENG Xian-lun, et al.Preliminary application of subloading surface to cyclic plastic model for rock under cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(10): 2073-2082. (in Chinese)) |
[17] |
白冰, 李小春, 石露, 等. 基于虚强度参数的塑性硬化模式[J]. 长江科学院院报, 2012, 29(8): 24-28.
(BAI Bing, LI Xiao-chun, SHI Lu, et al.A plastic hardening mode based on virtual strength parameters[J]. Journal of Yangtze River Scientific Research Institute, 2012, 29(8): 24-28. (in Chinese)) |
[18] |
赵坚, 李海波. 莫尔-库仑和霍克-布朗强度准则用于评估脆性岩石动态强度的适用性[J]. 岩石力学与工程学报, 2003, 22(2): 171-176.
(ZHAO Jian, LI Hai-bo.Estimating the dynamic strength of rock using Mohr-Coulomb and Hoek-Brown criteria[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 171-176. (in Chinese)) |
[19] |
戚承志, 钱七虎. 岩石等脆性材料动力强度依赖应变率的物理机制[J]. 岩石力学与工程学报, 2003, 22(2): 177-181.
(QI Cheng-zhi, QIAN Qi-hu.Physical mechanism of dependence of material strength on strain rate for rock-like material[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 177-181. (in Chinese)) |
[20] |
宋玉普. 混凝土的动力本构关系和破坏准则[M]. 北京: 科学出版社, 2013.
(SONG Yu-pu.Dynamic constitutive relation and failure criterion of concrete[M]. Beijing: Science Press, 2013. (in Chinese)) |
[21] |
李夕兵, 左宇军, 马春德. 中应变率下动静组合加载岩石的本构模型[J].岩石力学与工程学报, 2006, 25(5): 865-874.
(LI Xi-bing, ZUO Yu-jun, MA Chun-de.Constitutive model of rock under coupled static-dynamic loading with intermediate strain rate[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 865-874. (in Chinese)) |
[22] |
JOHNSON G R, COOK W H.A constitutive model and data for metals subjected to large strain, high strain rates and high temperatures[C]// Proc 7th Int Symp Ballistics, Am Def Pre Org(ADPA). The Hague, 1983: 541-547.
|
[23] |
宫凤强, 司雪峰, 李夕兵, 等. 基于应变率效应的岩石动态Mohr-Coulomb准则和Hoek-Brown准则研究[J]. 中国有色金属学报, 2016, 26(8): 1763-1773.
(GONG Feng-qiang, SI Xue-feng, LI Xi-bing, et al.Rock dynamic Mohr-Coulomb and Hoek-Brown criteria based on strain rate effect[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(8): 1763-1773. (in Chinese)) |
[1] | CUI Chunyi, XU Minze, XU Chengshun, ZHAO Jingtong, LIU Hailong, MENG Kun. Seismic fragility analysis of subway station structures considering statistical uncertainty of seismic demands[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 453-462. DOI: 10.11779/CJGE20230980 |
[2] | ZHANG Chenlong, ZHANG Dongming, HUANG Zhongkai, HUANG Hongwei. Resilience assessment method for subway stations considering uncertainty of seismic intensity[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 164-172. DOI: 10.11779/CJGE20231153 |
[3] | LI Jinqiang, ZHONG Zilan, SHEN Jiaxu, ZHANG Bu, ZHANG Yabo, DU Xiuli. Longitudinal seismic fragility analysis of utility tunnel structures based on IDA method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1622-1631. DOI: 10.11779/CJGE20230397 |
[4] | DAI Xuan, MA Yunxiang, WEI Shaowei, WEI Peiyong, HUO Haifeng, CAI Degou, LI Zhao. Seismic performance analysis of frame beams-reinforced slope under different earthquake intensities[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 147-152. DOI: 10.11779/CJGE2023S20019 |
[5] | QIU Dapeng, CHEN Jianyun, WANG Wenming, CAO Xiangyu. Fragility analysis of underground large-scale frame structures considering seismic effects of vertical earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2537-2546. DOI: 10.11779/CJGE20221053 |
[6] | ZHEN Libin, SHI Yuebo, ZHONG Zilan, DU Xiuli, LUO Wenlin. Efficient seismic fragility of underground structures using endurance time analysis method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 777-784. DOI: 10.11779/CJGE20220188 |
[7] | MENG Chang, TANG Liang. Seismic fragility analysis of pile-supported wharf in nearshore liquefiable ground[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2274-2282. DOI: 10.11779/CJGE202112014 |
[8] | ZHONG Zi-lan, SHEN Yi-yao, HAO Ya-ru, LI Li-yun, DU Xiu-li. Seismic fragility analysis of two-story and three-span metro station structures based on IDA method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 916-924. DOI: 10.11779/CJGE202005014 |
[9] | JIN Cong-cong, CHI Shi-chun, NIE Zhang-bo. Seismic safety analysis of high earth-rockfill dams based on seismic deformational fragility[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 334-343. DOI: 10.11779/CJGE202002015 |
[10] | ZHU Hong-wei, YAO Ling-kan, LAI Jun. Seismic vulnerability assessment of gravity retaining walls based on performance[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 150-157. DOI: 10.11779/CJGE202001017 |