• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Xiao-wei, YE Ai-jun, SHANG Yu. Shallow-layer p-y curves for single micropile in sands[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1736-1745. DOI: 10.11779/CJGE201809022
Citation: WANG Xiao-wei, YE Ai-jun, SHANG Yu. Shallow-layer p-y curves for single micropile in sands[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1736-1745. DOI: 10.11779/CJGE201809022

Shallow-layer p-y curves for single micropile in sands

More Information
  • Received Date: May 23, 2017
  • Published Date: September 24, 2018
  • Micropiles are increasingly used in seismic design or retrofitting for pile foundations. This study aims to investigate the validity of the widely used p-y relationships proposed by the American Petroleum Institute (API) and the ‘m method'; in the Chinese Code for numerical modeling of micropiles in sands. A quasi-static test is performed to reveal the shallow-layer (depth less than 1.0 m) experimental p-y curves for the micropiles in saturated medium dense sands. A piecewise-function based p-y derivation method is adopted to develop the experimental p-y curves. Subsequently, trilinear models for the shallow-layer p-y curves are proposed based on the test results. Further, numerical simulation techniques are used to analyze the validity of the proposed trilinear p-y model, API p-y model and ‘m method'; for predicting the strength and deflection of micropiles in sands. The results show that the API p-y model may slightly underestimate the lateral strength and overestimate the depth-to-maximum bending moment, whereas the proposed shallow-layer trilinear p-y model preferably predicts the global force-displacement relationship, bending moment and lateral deflection of micropiles. In addition, the conventional ‘m method'; is capable to predict the strength and deflection of micropiles. Specifically, a relatively large m value chosen from the recommended range is reasonable for the situation of deflection of small piles at soil surface (less than 6 mm), whereas for the micropiles with a relatively large deflection, the smallest m value among the recommended range is a preferable choice.
  • [1]
    向波, 马建林, 何云勇, 等. 小直径钢管排桩加固边坡的离心模型试验[J]. 岩石力学与工程学报, 2012, 31(增刊1): 2644-2652.
    (XIANG Bo, MA Jian-lin, HE Yun-yong, et al.Centrifugal model test of slope reinforced by small-diameter steel pipe row piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 2664-2652. (in Chinese))
    [2]
    TOKIMATSU K, TAMURA S, SUZUKI H, et al.Building damage associated with geotechnical problems in the 2011 Tohoku Pacific Earthquake[J]. Soils and Foundations, 2012, 52(5): 956-974.
    [3]
    GHORBANI A, HASANZADEHSHOOIILI H, GHAMARI E, et al.Comprehensive three dimensional finite element analysis, parametric study and sensitivity analysis on the seismic performance of soil-micropile-superstructure interaction[J]. Soil Dynamics and Earthquake Engineering, 2014, 58: 21-36.
    [4]
    DOBRY R, ABDOUN T, O’ROURKE T D, et al. Single piles in lateral spreads?: field bending moment evaluation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(10): 879-889.
    [5]
    MATLOCK H, FOO H C, BRYANT L M.Simulation of lateral pile behavior under earthquake motion[C]// Proceedings of the ASCE Geotechnical Engineering Division Specialty Conference on Earthquake Engineering and Soil Dynamics. Pasadena, 1978.
    [6]
    FINN W D, FUJITA N.Piles in liquefiable soils: seismic analysis and design issues[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9-12): 731-742.
    [7]
    BOULANGER R W, CURRAS C J, KUTTER B L, et al.Seismic soil-pile-structure interaction experiments and analyses[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(9): 750-759.
    [8]
    苏静波, 邵国建, 刘宁. 基于p-y曲线法的水平受荷桩非线性有限元分析[J]. 岩土力学, 2006, 27(10): 1781-1785.
    (SU Jing-bo, SHAO Guo-jian, LIU Ning.Nonlinear finite element analysis of piles under lateral load based on p-y curves[J]. Rock and Soil Mechanics, 2006, 27(10): 1781-1785. (in Chinese))
    [9]
    苏栋. 弹塑性p-y模型及非线性地基梁的增量有限元法[J]. 岩土工程学报, 2012, 34(8): 1469-1474.
    (SU Dong.Elasto-plastic p-y model and incremental finite element method for beams on nonlinear foundation[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1469-1474. (in Chinese))
    [10]
    WANG X, LUO F, SU Z et al. Efficient finite-element model for seismic response estimation of piles and soils in liquefied and laterally spreading ground considering shear localization[J]. International Journal of Geomechanics, 2017, 17(6): 6016039.
    [11]
    WANG X, YE A, HE Z, et al.Quasi-static cyclic testing of elevated RC pile-cap foundation for bridge structures[J]. Journal of Bridge Engineering, 2016, 21(2): 4015042.
    [12]
    HE L, ELGAMAL A, ABDOUN T, et al.Liquefaction induced lateral load on pile in a medium dr sand layer[J]. Journal of Earthquake Engineering, 2009, 13(7): 916-938.
    [13]
    GIANNAKOS S, GEROLYMOS N, GAZETAS G.Cyclic lateral response of piles in dry sand: finite element modeling and validation[J]. Computers and Geotechnics, 2012, 44: 116-131.
    [14]
    JTGD63—2007 公路桥涵地基与基础设计规范[S]. 2007.
    (JTGD63—2007 Code for design of ground base and foundation of highway bridges and culverts[S]. 2007. (in Chinese))
    [15]
    燕斌. 桥梁桩基础抗震简化模型比较研究[D]. 上海: 同济大学, 2007.
    (YAN Bin.Study on simplified models of bridge pile-foundation subjected to earthquake[D]. Shanghai: Tongji University, 2007. (in Chinese))
    [16]
    KONDNER R L.Hyperbolic stress-strain response: cohesive soils[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1963, 89(1): 115-144.
    [17]
    REESE L C, COX W R, KOOP F D.Analysis of laterally loaded piles in sand[C]//Proceedings of the 6th Annual Offshore Technology Conference. Houston, 1974: 473-485.
    [18]
    O’NEILL M W, MURCHISON J M. An evaluation of p-y relationships in sands[R]. Houston: University of Houston, 1983.
    [19]
    YAN L, BYRNE P M.Lateral pile response to monotonic pile head loading[J]. Canadian Geotechnical Journal, 1992, 29(6): 955-970.
    [20]
    WILSON D W.Soil-pile-superstructure interaction in liquefying sand[D]. Davis: University of California, 1998.
    [21]
    TAK KIM B, KIM N-K, JIN LEE W, et al.Experimental load-transfer curves of laterally loaded piles in Nak-Dong river sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(4): 416-425.
    [22]
    ZHU B, SUN Y X, CHEN R P, et al.Experimental and analytical models of laterally loaded rigid monopiles with hardening p-y curves[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2015, 141(6): 4015007.
    [23]
    王成雷, 王建华, 冯士伦, 等. 土层液化条件下桩土相互作用p-y关系分析[J]. 岩土工程学报, 2007, 29(10): 1500-1505.
    (WANG Cheng-lei, WANG Jian-hua, FENG Shi-lun.Analysis on p-y curves of soil-pile interaction in liquefied soils[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1500-1505. (in Chinese))
    [24]
    李雨润, 袁晓铭, 梁艳. 桩-液化土相互作用p-y曲线修正计算方法研究[J]. 岩土工程学报, 2009, 31(4): 595-599.
    (LI Yu-run, YUAN Xiao-ming, LIANG Yan.Modified calculation method of p-y curves for liquefied soil-pile interaction[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 595-599. (in Chinese))
    [25]
    朱斌, 熊根, 刘晋超, 等. 砂土中大直径单桩水平受荷离心模型试验[J]. 岩土工程学报, 2013, 35(10): 1807-1815.
    (ZHU Bin, XIONG Gen, LIU Jin-chao, et al.Centrifuge modelling of a large-diameter single pile under lateral loads in sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1807-1815. (in Chinese))
    [26]
    张永亮, 陈兴冲, 孙建飞. 桥梁群桩基础非线性静力计算模型及拟静力试验研究[J]. 岩石力学与工程学报, 2013, 32(9): 1799-1806.
    (ZHANG Yong-liang, CHEN Xing- chong, SUN Jian-fei. Nonlinear static calculation model and pseudo-static test of pile group bridge foundations[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1799-1806. (in Chinese))
    [27]
    高博雷, 张陈蓉, 张照旭. 砂土中边坡附近单桩水平抗力的模型试验研究[J]. 岩土力学, 2014, 35(11): 3191-3198.
    (GAO Bo-lei, ZHANG Chen-rong, ZHANG Zhao-xu.Model tests on effect of slopes on lateral resistance of near single piles in sand[J]. Rock and Soil Mechanics, 2014, 35(11): 3191-3198. (in Chinese))
    [28]
    API. Geotechnical and foundation design considerations[M]. Washington D C: American Petroleum Institute, 2011.
    [29]
    COX W R, REESE L C, GRUBBS B R.Field testing of laterally loaded piles in sand[C]//Proceedings of the 6th Annual Offshore Technology Conference. Houston, 1974: 459-464.
    [30]
    DYSON G J, RANDOLPH M F.Monotonic lateral loading of piles in calcareous sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(4): 346-352.
    [31]
    ACHMUS M, KUO Y S, ABDEL-RAHMAN K.Behavior of monopile foundations under cyclic lateral load[J]. Computers and Geotechnics, 2009, 36(5): 725-735.
    [32]
    JURAN I, BENSLIMANE A, HANNA S.Engineering analysis of dynamic behavior of micropile systems[J]. Journal of the Transportation Research Board, 2001, 1772(1): 91-106.
    [33]
    SHAHROUR I, JURAN I.Seismic behaviour of micropile systems[J]. Ground Improvement, 2004, 8(3): 109-120.
    [34]
    ZHANG L, ZHAO M, ZOU X.Behavior of laterally loaded piles in multilayered soils[J]. International Journal of Geomechanics, 2015, 15(2): 6014017.
    [35]
    伍小平, 孙利民, 胡世德, 等. 振动台试验用层状剪切变形土箱的研制[J]. 同济大学学报(自然科学版), 2002, 30(7): 781-785.
    (WU Xiao-ping, SUN Li-min, HU Shi-de, et al.Development of laminar shear box used in shaking table test[J]. Journal of Tongji University (Natural Science), 2002, 30(7): 781-785. (in Chinese))
    [36]
    YANG K, LIANG R.Methods for deriving p-y curves from instrumented lateral load tests[J]. Geotechnical Testing Journal, 2007, 30(1): 100317.
    [37]
    SINNREICH J, AYITHI A.Derivation of p-y curves from lateral pile load test instrument data[J]. Geotechnical Testing Journal, 2014, 37(6): 1-12.
    [38]
    MATHWORKS. MATLAB the language of technical computing[CP]. MathWorks, 2015, Version b.
    [39]
    王晓伟, 叶爱君, 罗富元. 液化场地桩柱式基础桥梁结构地震反应的敏感性分析[J]. 工程力学, 2016, 33(8): 132-140.
    (WANG Xiao-wei, YE Ai-jun, LUO Fu-yuan.Seismic response sensitivity analysis of pile supported bridge structures in liquefiable ground[J]. Engineering Mechanics, 2016, 33(8): 132-140. (in Chinese))
    [40]
    MCKENNA F.OpenSees: a framework for earthquake engineering simulation[J]. Computing in Science and Engineering, 2011, 13(4): 58-66.
  • Cited by

    Periodical cited type(2)

    1. 赵瑞,代登辉,武广繁,沈凡茗,薛凯. 考虑土塞效应管桩的竖向动力响应解析解. 河南科学. 2025(05): 625-634 .
    2. 刘浩,吴文兵,蒋国盛,梅国雄,梁荣柱,官文杰. 土塞效应对管桩低应变测试视波速的影响研究. 岩土工程学报. 2019(02): 383-389 . 本站查看

    Other cited types(13)

Catalog

    Article views PDF downloads Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return