• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHEN Yuan-wen, HUANG Mao-song, LOU Chu-yang. Model tests and analyses of caisson foundation based on gravel cushion under cyclic lateral loads[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1619-1626. DOI: 10.11779/CJGE201809007
Citation: CHEN Yuan-wen, HUANG Mao-song, LOU Chu-yang. Model tests and analyses of caisson foundation based on gravel cushion under cyclic lateral loads[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1619-1626. DOI: 10.11779/CJGE201809007

Model tests and analyses of caisson foundation based on gravel cushion under cyclic lateral loads

More Information
  • Received Date: May 01, 2017
  • Published Date: September 24, 2018
  • The caisson foundation based on the gravel cushion is a scheme of deep foundations suitable for the ground with thick weak soil in seismic areas and has many advantages such as excellent seismic resistance, high bearing capacity, convenience for construction and reasonable cost. In this study, a series of 1g model tests on the caisson foundation based on the gravel cushion are conducted using a loading device designed for cyclic loadings of large cycle numbers, and the characteristics of bearing capacity and displacement of the foundation subjected to lateral static loads, cyclic loads and static loads after cyclic loadings are discussed. The experimental results reveal that the foundation has reliable working performance under long-term lateral cyclic loads. Under the static loading, the load-horizontal displacement curve of the foundation can be viewed as a rigid-plastic relation and described in a hyperbola relationship. Under the cyclic loads, the accumulative displacement of the foundation develops in a stable manner and increases with the amplitude of the cyclic loads. The accumulative displacement under one-way cyclic loads is larger than the displacement under the static loads with the same amplitude. Both the bearing capacity and loading stiffness are enhanced in all directions after cyclic loadings. Then the modified G-M elastoplastic interface constitutive model based on the boundary surface theory is improved and programmed into ABAQUS utilizing the interface user subroutine UINTER in ABAQUS, and the FEM analyses of model tests are conducted, and the results match well with the test ones.
  • [1]
    COMBAULT J.The Rion-Antirion Bridge—when a dream becomes reality[J]. Frontiers of Architecture and Civil Engineering in China, 2011, 5(4): 415-426.
    [2]
    LOGAR J.Ground improvement: state-of-the-art in South-Eastern Europe[C]// Symposium Baugrundverbesserung in der Geotechnik (2nd Symposium on Ground Improvement in Geotechnics). Vienna, 2012: 19-46.
    [3]
    朱建民, 张瑞霞, 穆保岗, 等. 碎石垫层在跨海大桥超大型设置基础中的应用[J]. 公路, 2014, 59(3): 84-87.
    (ZHU Jian-min, ZHANG Rui-xia, MU Bao-gang, et al.Application of gravel cushion in super-large laying-down foundations[J]. Highway, 2014, 59(3): 84-87. (in Chinese))
    [4]
    PECKER A, TEYSSANDIER J P.Seismic design for the foundations of the Rion-Antirion Bridge[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 1998, 131(1): 4-11.
    [5]
    COMBAULT J, MORAND P, PECKER A.Structural response of the Rion-Antirion Bridge[C]// Proceedings of the 12th World Conference on Earthquake Engineering. Auckland, 2000: 1609.
    [6]
    PECKER A.Aseismic foundation design process, lessons learned from two major projects: the Vasco de Gama and the Rion-Antirion Bridges[C]// ACI International Conference on Seismic Bridge Design and Retrofit. La Jolla, 2003.
    [7]
    PECKER A.Design and construction of the Rion Antirion Bridge[C]// Geotechnical Engineering for Transportation Projects, Proceedings of Geo-Trans. Los Angeles, 2004: 216-240.
    [8]
    PECKER A.Enhanced seismic design of shallow foundations: example of the Rion-Antirion Bridge[C]// Proceedings of 4th Athenian Lecture on Geotechnical Engineering. Athens, 2006.
    [9]
    INFANTI S, PAPANIKOLAS P, CASTELLANO M G.Seismic protection of the Rion-Antirion Bridge[C]// Proceedings of 8th World Seminar on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures. Yerevan, 2003.
    [10]
    INFANTI S, PAPANIKOLAS P, BENZONI G, et al.Rion-Antirion Bridge: design and full-scale testing of the seismic protection devices[C]// Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver, 2004:2174.
    [11]
    TEYSSANDIER J P, COMBAULT J, MORAND P.The Rion-Antirion Bridge design and construction[C]// Proceedings of the 12th World Conference on Earthquake Engineering. Auckland, 2000: 1115-1127.
    [12]
    PAPANIKOLAS P, STATHOPOULOS-VLAMIS A, PANAGIS A, et al.The behavior of Rion-Antirion Bridge during the earthquake of “Achaia-Ilia” on June 8, 2008[C]// Proceedings of 3rd International fib Congress incorporating the PCI Annual Convention and Bridge Conference. Washington D C, 2010.
    [13]
    MORTARA G, BOULON M, GHIONNA V N.A 2-D constitutive model for cyclic interface behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(26): 1071-1096.
    [14]
    GHIONNA V N, MORTARA G.An elastoplastic model for sand-structure interface behaviour[J]. Géotechnique, 2002, 52(1): 41-50.
    [15]
    任宇. 长期竖向循环荷载作用下桩的变形特性试验及理论研究[D]. 杭州: 浙江大学, 2013.
    (REN YU.Model test and theoretical study on deformation behavior of single piles to long-term cyclic axial loading[D]. Hangzhou: Zhejiang University, 2013. (in Chinese))
    [16]
    楼初旸, 黄茂松. 修正Ghionna-Mortara界面模型在碎石垫层沉箱基础中的应用[J]. 建筑科学, 2016, 32(增刊): 210-215.
    (LOU Chu-yang, HUANG Mao-song.Application of modified Ghionna-Mortara interface constitutive model to the caisson foundation with gravel cushion[J]. Building Science, 2016, 32(S0): 210-215. (in Chinese))
    [17]
    张勋, 黄茂松. 水平循环荷载下砂土中沉井加桩基础累积变形特性[J]. 岩石力学与工程学报, 2016, 35(6): 1265-1272.
    (ZHANG Xun, HUANG Mao-song.Cumulative deformation of a caisson-piles composite foundation in sand subjected to cyclic lateral loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(6): 1265-1272. (in Chinese))
    [18]
    SLOAN S W.Substepping schemes for numerical integration of elasto-plastic stress-strain relations[J]. International Journal for Numerical Methods in Engineering, 1987, 24(5): 893-911.
    [19]
    楼初旸. 碎石垫层沉箱基础水平静力及循环加载特性[D]. 上海: 同济大学, 2017.
    (LOU Chu-yang.Response of caisson foundations based on gravel cushions subjected to lateral monotonic and cyclic loadings[D]. Shanghai: Tongji University, 2017. (in Chinese))
  • Cited by

    Periodical cited type(12)

    1. 苗胜军,余文轩,梁明纯,杨鹏锦,李从豪,刘泽京. 岩石各向异性波速三维全方位表征方法与声发射定位优化. 工程科学学报. 2025(03): 454-467 .
    2. 徐荣超,王怡博,张圣哲,孟凡震,李震,高梁,阎震. 轴向及环向变形加载控制方式对花岗岩力学及声发射特性影响的试验研究. 工程地质学报. 2025(01): 123-134 .
    3. 张翼飞,朱明礼,张红成,陈嘉,李起航,雷彬彬. 轴向静载压缩作用下深部砂岩的变形破坏规律. 有色金属工程. 2024(06): 116-124 .
    4. 龚耕,潘佳,赵立春,熊峰,张国华,唐志成. 基于压敏胶片的法向应力作用下砂岩节理的接触特征研究. 岩土力学. 2024(10): 2907-2918+2928 .
    5. 刘葳,杨有贞,刘美汐,马慧,马文国,张刚. 冻融条件下贺兰口岩石损伤声发射特征研究. 西北工程技术学报. 2024(03): 243-251 .
    6. 张村,王潇杰,师旭涛,赵毅鑫,韩鹏华,张通. 含水饱和度影响下砂岩劈裂特性与水岩作用机制. 岩石力学与工程学报. 2024(S2): 3722-3737 .
    7. 胡玉波,房敬年,徐荣超,郝小红,阎震,周文朋,李震. 饱水作用对白砂岩损伤破裂及声发射特性的影响. 长江科学院院报. 2024(11): 163-171 .
    8. 李盛南,肖俊,李玉,刘新喜,梁桥,常锦,刘杰. 基于细观裂纹扩展演化的岩石损伤本构模型研究. 岩石力学与工程学报. 2023(03): 640-648 .
    9. 刘洋甫,刘思孟,陈坤,陈强,蒲于立,谈俊杰. 拉/压状态下混凝土声发射信号参数特征试验研究. 混凝土. 2023(02): 10-14 .
    10. 朱俊,邓建辉,陈菲,黄弈茗. 压缩荷载下饱和硬岩软化特性与机制研究. 岩土工程学报. 2023(04): 768-776 . 本站查看
    11. 杨江坤,宋彦琦,马宏发,郑俊杰,杨俊涛,鲍伟. 岩石单轴声发射及能量耗散特征颗粒流模拟研究. 矿业研究与开发. 2023(04): 88-94 .
    12. 齐庆新,李海涛,郑伟钰,杜伟升,杨冠宇,李晓鹏. 煤岩弹性变形能的表征物理模型及实测方法. 煤炭科学技术. 2022(01): 70-77 .

    Other cited types(10)

Catalog

    Article views PDF downloads Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return