• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHAI Hua-you, KE Wen-hui, CHEN Elton J, HUANG Xiang-guo, LI Zhong-chao. Disturbances of surface wave field due to wave scattering at shallow cavities[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1473-1480. DOI: 10.11779/CJGE201808013
Citation: CHAI Hua-you, KE Wen-hui, CHEN Elton J, HUANG Xiang-guo, LI Zhong-chao. Disturbances of surface wave field due to wave scattering at shallow cavities[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1473-1480. DOI: 10.11779/CJGE201808013

Disturbances of surface wave field due to wave scattering at shallow cavities

More Information
  • Received Date: April 24, 2017
  • Published Date: August 24, 2018
  • In homogenous half spaces, the wave fields at shallow depth are dominated by Rayleigh waves activated by the surface sources. When the forward Rayleigh waves encounter a shallow cavity, the displacement shapes and the particle orbit are changed. Rayleigh waves are scattered at the cavity. The wave field is disturbed by the scattering waves. The different features of the disturbances can be found in different regions of the surface wave field. In the region in front of the cavity, the reflected and the incident Rayleigh waves interfere constructively or destructively with each other. The interference fringes are formed. In the region over the cavity, the transmitted waves are dispersive. The phase velocities are different from those of Rayleigh waves. Under certain conditions, the behaviour of the transmitted waves is similar to that of Lamb waves in the free plates. The diffraction of the transmitted waves along the back boundary results in the energy reduction in the surface wave field over the boundary. Influenced by the geometrical attenuation, the transmitted Rayleigh waves gradually dominate the surface wave field in the back region. The components at low frequencies have greater energy reduction as compared to those at high frequencies. Based on the wave scattering theory, the effects of the ratio of the buried depth to the wavelength of Rayleigh waves on the disturbances of the surface wave field are analyzed. The numerical simulations are used to verify the analyses. It is shown from the results that the buried depth can be estimated from the critical wavelength corresponding to the energy reduction in the offset-wavelength domain.
  • [1]
    CJJ/T 7—2017城市工程地球物理探测标准[S]. 2018.
    (CJJ/T 7—2017 Standard for urban engineering geophysical exploration[S]. 2018. (in Chinese))
    [2]
    GUCUNSKI N, GANJI V, MAHER M H.Effects of obstacles on Rayleigh wave dispersion obtained from the SASW test[J]. Soil Dynamics and Earthquake Engineering, 1996, 15: 223-231.
    [3]
    GANJI V, GUCUNSKI N, MAHER M H.Detection of underground obstacles by SASW method: numerical aspects[J]. Journal of Geotechnical and Geoenviromental Engineering, 1997, 123(3): 212-219.
    [4]
    GRANDJEAN G, LEPAROUX D.The potential of seismic methods for detecting cavities and buried objects: experimentation at a test site[J]. Journal of Applied Geophysics, 2004, 56(2): 93-106.
    [5]
    GELIS C, LEPAROUX D, VIRIEUX J, BITRI A, OPERTO S, GRANDJEAN G.Numerical modeling of surface waves over shallow cavities[J]. Journal of Environmental and Engineering Geophysics, 2005, 10(2): 111-121.
    [6]
    NASSERI-MOGHADDAM A, CASCANTE G, PHILLIPS C, et al.Effects of underground cavities on Rayleigh waves: field and numerical experiments[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(4): 300-313.
    [7]
    XIA J H, NYQUIST J E, XU Y X, et al.Feasibility of detecting near-surface feature with Rayleigh-wave diffraction[J]. Journal of Applied Geophysics, 2007: 62(3): 244-253.
    [8]
    TALLAVÓ F, CASCANTE G, PANDEY M.Experimental and numerical analysis of MASW tests for detection of buried timber trestles[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(1): 91-102.
    [9]
    夏宇靖. 稳态表面波实测地下异质体D-VR曲线的类型[J]. 煤田地质与勘探, 1996, 24(1): 50-55.
    (XIA Yu-jing.Types of D-VR curves obtained by steady Rayleigh wave testing[J]. Coal Geology and Prospecting, 1996, 24(1): 50-55. (in Chinese))
    [10]
    柴华友, 卢应发, 刘明贵, 等. 表面波谱分析影响因素研究[J]. 岩土力学, 2004, 25(3): 347-353.
    (CHAI Hua-you, LU Ying-fa, LIU Ming-gui, et al.Influences of measuring factors on spectral analysis in surface wave testing[J]. Rock and Soil Mechanics, 2004, 25(3): 347-353. (in Chinese))
    [11]
    柴华友, 卢应发, 李祺, 等. 半无限体介质内异质体方位探测数值研究[J]. 岩土力学, 2007, 28(1): 188-192.
    (CHAI Hua-you, LU Ying-fa, LI Qi, et al.Numerical study on detection of heterogeneities in an half space[J]. Rock and Soil Mechanics, 2007, 28(1): 188-192. (in Chinese))
    [12]
    柴华友, 崔玉军, 卢应发, 等. 地下洞穴对表面波表观相速度影响的数值分析[J]. 岩石力学与工程学报, 2006, 25(5): 956-962.
    (CHAI Hua-you, CUI Yu-jun, LU Ying-fa, et al.Numerical analysis of influences of underground cavity on apparent phase velocities of surface waves[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 956-962. (in Chinese))
    [13]
    VAN WIJK K.Multiple scattering of surface waves[D]. Colorado: Center for Wave Phenomena, Colorado School of Mines, 2003.
    [14]
    CAMPMAN X H, VAN WIJK K, SCALES J A, et al.Imaging and suppressing near-receiver scattered surface waves[J]. Geophysics, 2005, 70(2): 21-29.
    [15]
    CAMPMAN X H.Imaging and suppressing near-receiver scattered seismic waves[D]. Delft: Delft Institute of Applied Mathematics, Delft University of Technology, 2005.
    [16]
    RIYANTI C D.Modeling and inversion of scattered surface waves[D]. Delft: Delft Institute of Applied Mathematics, Delft University of Technology, 2005.
    [17]
    伊文, 贾戴茨基, 普瑞斯. 层状介质中的弹性波[M]. 刘光鼎, 译. 北京: 科学出版社, 1966.
    (EWING W M, JARDETZKY W S, PRESS F.Elastic waves in layered media[M]. LIU Guang-ding, tran. Beijing: Science Press, 1966. (in Chinese))
    [18]
    FOINQUINOS R, ROËSSET J M. Elastic layered half-spaces subjected to dynamic surface loads[M]. KAUSEL E, MANOLIS G, eds. Southampton: WIT Press, 2001.
    [19]
    KAUSEL E, PEEK R.Dynamic loads in the interior of a layered stratum: an explicit solution[J]. Bulletin of the Seismological Society of America, 1982, 72(5): 1459-1481.
    [20]
    KAUSEL E.Dynamic point sources in laminated media via the thin-layer method[J]. International Journal of Solids and Structures, 1999, 36(31): 3614-3631.
    [21]
    CHAI H Y, PHOON K K, GOH S H, et al.Some theoretical and numerical observations on scattering of Rayleigh waves in media containing shallow rectangular cavities[J]. Journal of Applied Geophysics, 2012, 83: 107-119.
  • Cited by

    Periodical cited type(14)

    1. 刘小锐,张晗. 盾构隧道下穿施工对严重倾斜挡墙影响及加固措施分析. 粉煤灰综合利用. 2025(01): 145-149 .
    2. 余鹏. 盾构隧道穿越在建PBA车站风险控制技术研究. 铁道标准设计. 2025(04): 148-156 .
    3. 马昭,张明礼,段旭晗,赵博. 大断面浅埋隧道地表沉降Peck修正公式及其应用. 长江科学院院报. 2024(03): 118-125 .
    4. 陈湘生,全昭熹,陈一凡,沈翔,苏栋. 极端环境隧道建造面临的主要问题及发展趋势. 隧道建设(中英文). 2024(03): 401-432 .
    5. 张子新,李小昌,李佳宇. 软土地层盾构掘进土体稳定性模型试验研究. 土木与环境工程学报(中英文). 2024(03): 41-51 .
    6. 刘彦良. 水下大直径盾构下穿施工对防汛大堤影响研究. 建筑机械. 2024(07): 142-146 .
    7. 黄震,黄侦谦,侯东祥,尤伟军,管世玉. 盾构掘进对浅基础建筑物的扰动及影响分区研究. 科技通报. 2024(07): 97-106 .
    8. 高泉平,杨硕,芮瑞,张泉,聂利文,孙天健. 邻近挡土结构隧道开挖引起地层变形的试验研究. 武汉理工大学学报. 2023(09): 75-82 .
    9. 张恒旭. 某过江隧道江心洲防洪大堤开挖对周围环境的影响分析. 工程技术研究. 2022(09): 13-17 .
    10. 王智德,武海港,杨文东,李杰,李根,刘奇. 地铁隧道近距离侧穿邻近桩基影响的试验研究. 武汉理工大学学报. 2022(06): 69-77 .
    11. 王长虹,马铖涛,吴昭欣,王昆,汤道飞. CPTU数据校准黏土和砂土统一模型本构参数的随机力学-贝叶斯方法. 土木工程学报. 2022(10): 101-116 .
    12. 董立波. 上软下硬复合地层中盾构下穿既有建筑物受力性能研究. 智能城市. 2021(04): 15-16 .
    13. 芮瑞,翟玉新,徐杨青,何清. 邻近地层损失对地下挡土结构土压力与地表沉降影响试验研究. 岩土工程学报. 2021(04): 644-652 . 本站查看
    14. 魏勇,许强,王卓,李骅锦,李松林. 动态摄影测量在物理模型实验全过程地形数据获取中的应用. 地球科学进展. 2020(10): 1087-1098 .

    Other cited types(11)

Catalog

    Article views PDF downloads Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return