• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
WANG Zhe-chao, ZONG Zhi, QIAO Li-ping, LI Shu-cai, LI Wei. Elastoplastic constitutive model and parameter determination for transversely isotropic rocks[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1457-1465. DOI: 10.11779/CJGE201808011
Citation: WANG Zhe-chao, ZONG Zhi, QIAO Li-ping, LI Shu-cai, LI Wei. Elastoplastic constitutive model and parameter determination for transversely isotropic rocks[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1457-1465. DOI: 10.11779/CJGE201808011

Elastoplastic constitutive model and parameter determination for transversely isotropic rocks

More Information
  • Received Date: July 16, 2017
  • Published Date: August 24, 2018
  • Layered rocks are widely distributed in formations. The macro-structure of the layered rocks is characterized with transversely isotropy, which will induce the transverse isotropy in deformation and strength. Based on the basic theory of elasticity and generalized plastic mechanics, an elastoplastic constitutive model for transversely isotropic rock is proposed. In the model, the generalized Hooke's law is adopted for the elastic behavior. For the plastic behavior, the yield criterion and potential function formulated as a function of the generalized octahedral shear stress, the non-associated flow rule and the stress-dependent hardening criterion are used. The yield surface of the model is convex with non-equal intercept elliptical cross-section pyramid, which can be simplified under isotropic condition as that for the Mises yield criterion. A method for determination of the model parameters is proposed, that is, the elastic parameters are obtained by combining the triaxial compression tests with a torsion test. The plastic parameters are obtained by using the triaxial compression tests on samples with different bedding directions. Taking the carbonaceous slate as an example, the proposed transversely isotropic elastic-plastic model and the parameter determination method are verified. The results show that the proposed model can reflect the transversal isotropy of the rock well, and the parameter determination method is simple and effective. The direction of plastic potential and the coupling between elastic and plastic behaviors of carbonaceous slate are also discussed according to the test data. This research provides a theoretical basis for enriching the basic theory of rock mechanics and solving engineering problems.
  • [1]
    BARTON N, QUADROS E.Anisotropy is everywhere, to see, to measure, and to model[J]. Rock Mech Rock Eng, 2015, 48(4): 1323-1339.
    [2]
    AMADEI B.Importance of anisotropy when estimating and measuring in situ stresses in rock[J]. International Journal of Rock Mechanics and Mining Sciences, 1996, 33(3): 293-325.
    [3]
    秦二涛. 深埋层状岩体地下硐室稳定性及支护技术研究[D].长沙: 中南大学, 2012.
    (QIN Er-tao.Study on stability of underground caverns and support technology in deep layered rock mass[D]. Changsha: Central South University, 2012. (in Chinese))
    [4]
    刘运思, 傅鹤林, 伍毅敏, 等. 横观各向同性岩石弹性参数及抗压强度的试验研究[J]. 中南大学学报(自然科学版), 2013, 8: 3398-3404.
    (LIU Yun-si, FU He-lin, WU Yi-min, et al.Experimental study of elastic parameters and compressive strength for transversely isotropic rocks[J]. Journal of Central South University, 2013, 8: 3398-3404. (in Chinese))
    [5]
    段靓靓, 梁锴, 方理刚. 岩石横观各向同性参数试验研究[J]. 土工基础, 2008(3): 80-82, 85.
    (DUAN Liang-liang, LIANG Kai, FANG Li-gang.Test research for transverse isotropy parameter of rock[J]. Soil Engineering and Foundation, 2008(3): 80-82, 85. (in Chinese))
    [6]
    CHOU Y C, CHEN C S.Determining elastic constants of transversely isotropic rocks using Brazilian test and iterative procedure[J]. Int J Numer Anal Meth Geomech, 2008, 32(3): 219-234.
    [7]
    TALESNICK M L, LEE M Y, HAIMSON B C.On the determination of elastic material parameters of transverse isotropic rocks from a single test specimen[J]. Rock Mech Rock Eng, 1995, 28(1): 17-35.
    [8]
    卢应发, 杨丽平, 陈高峰, 等. 层状地质材料弹性张量求解及应用[J]. 岩石力学与工程学报, 2008, 27(5): 922-930.
    (LU Ying-fa, YANG Li-ping, CHEN Gao-feng, et al.Research on elastic tensor resolution in stratified geomaterial and tis application[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 922-930. (in Chinese))
    [9]
    BOBET A.Lined circular tunnels in elastic transversely anisotropic rock at depth[J]. Rock Mech Rock Eng, 2011, 44(2): 149-167.
    [10]
    HEFNY A M, LO K Y.Analytical solutions for stresses and displacements around tunnels driven in cross-anisotropic rocks[J]. Int J Numer Anal Meth Geomech, 1999, 23(2): 161-177.
    [11]
    VU T M, SULEM J, SUBRIN D, et al.Semi-analytical solution for stresses and displacements in a tunnel excavated in transversely isotropic formation with non-linear behavior[J]. Rock Mech Rock Eng, 2013, 46(2): 213-229.
    [12]
    张志增, 李仲奎. 横观各向同性岩体中圆形巷道反分析的惟一性[J]. 岩土力学, 2011, 32(7): 2066-2072.
    (ZHANG Zhi-zeng, LI Zhong-kui.Uniqueness of displacement back analysis of a circular tunnel in transversely isotropic rock mass[J]. Rock and Soil Mechanics, 2011, 32(7): 2066-2072. (in Chinese))
    [13]
    王永刚, 丁文其, 贾善坡, 等. 考虑结构面特性的层状岩体各向异性模型[J]. 公路交通科技, 2014(10): 85-92.
    (WANG Yong-gang, DING Wen-qi, JIA Shan-po, et al.Anisotropic model of layered rock mass considering characteristics of structural interface[J]. Journal of Highway and Transportation Research and Development, 2014(10): 85-92. (in Chinese))
    [14]
    LONG N M A N, KHALDJIGITOV A A, ADAMBAEV U. On the constitutive relations for isotropic and transversely isotropic materials[J]. Applied Mathematical Modelling, 2013, 37: 7726-7740.
    [15]
    徐磊, 任青文, 杜小凯, 等. 层状岩体各向异性弹塑性模型及其数值实现[J]. 地下空间与工程学报, 2010(4): 763-769.
    (XU Lei, REN Qing-wen, DU Xiao-kai, et al.An anisotropic elastoplastic constitutive model for layered rock masses and its implementation[J]. Chinese Journal of Underground Space and Engineering, 2010(4): 763-769. (in Chinese))
    [16]
    HILL R.The mathematical theory of plasticity[M]. Oxford: Clarendon Press, 1950.
    [17]
    郑颖人, 孔亮. 岩土塑性力学[M]. 北京: 中国建筑工业出版社, 2010.
    (ZHENG Yin-ren, KONG Liang.Geotechnical plastic mechanics[M]. Beijing: China Architecture and Building Press, 2010. (in Chinese))
    [18]
    王者超, 乔丽苹, 李术才, 等. 土的内变量蠕变模型研究[J]. 岩土工程学报2011, 33(10): 1569-1575.
    (WANG Zhe-chao, QIAO Li-ping, LI Shu-cai, et al.An internal-variable creep model for soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1569-1575. (in Chinese))
  • Related Articles

    [1]LIU Si-hong, SHAO Dong-chen, SHEN Chao-min, WANG Zi-jian. Microstructure-based elastoplastic constitutive model for coarse-grained materials[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 777-783. DOI: 10.11779/CJGE201705001
    [2]LI Jian, ZHAO Cheng-gang, HUANG Qi-di. Constitutive modeling with double-scale pore structure for coupling of capillary hysteresis and stress-strain behaviours in unsaturated expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2127-2133.
    [3]PENG Fang-le, CAO Yan-bo. FEM analysis of effect of reinforced layer numbers on bearing capacity and deformation of reinforced-sand retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1700-1707.
    [4]Elastoplastic damage coupled model for gas-saturated coal under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1).
    [5]XU Chengshun, LUAN Maotian, GUO Ying, ZHANG Zhendong. Elasto-plastic constitutive model of sand considering initial anisotropy and its verification through experiments[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 546-551.
    [6]Lv Xilin, HUANG Maosong, QIAN Jiangu. Bifurcation analysis in true traxial tests on sands based on non-coaxial elasto-plasticity model[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 646-651.
    [7]LI Hongru, HU Zaiqiang, CHEN Cunli, XIE Dingyi. Approach of soil dynamic response analysis based on physical state constitutive relationship[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 503-510.
    [8]WANG Gang, ZHANG Jianmin. A cyclic elasto-plastic constitutive model for evaluating large liquefaction-induced deformation of sand[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 51-59.
    [9]CAO Xueshan. Elastoplastic constitutive model of unsaturated expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 832-836.
    [10]Yu Maohong, Yang Songyan, Fan Saucheong, Fung Tatching. Twin Shear Unified Elasto-Plastic Constitutive Model and Its Applications[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(6): 2-10.
  • Cited by

    Periodical cited type(10)

    1. 朱才辉,周小松,乔建伟,李鑫磊. 孔内深层强夯法处理湿陷性黄土地基试验研究. 自然灾害学报. 2025(01): 217-229 .
    2. 张子萱,曹宝花,韩泽敏,许江波,程芳卉,陈绍华,侯鑫敏,詹皓辰. PFC3D颗粒流模拟纳米黏土改良黄土三轴试验. 岩土工程技术. 2024(03): 365-373 .
    3. 杨智慧,李珊花. 基于PFC~(2D)的水泥土单轴压缩试验及细观数值模拟. 中外公路. 2023(01): 189-193 .
    4. 刘欢,张庆文,连晓兰,朱孟龙,聂广影. 非饱和绢云母片岩残积土一维压缩变形规律. 科学技术与工程. 2021(03): 1131-1137 .
    5. 李涛,蒋明镜,李立青. 非饱和重塑黄土应变控制等应力比试验三维离散元分析. 水利与建筑工程学报. 2021(02): 36-41 .
    6. 蒋明镜,王优群,卢国文,张鹏. 非饱和重塑与结构性黄土平面应变试验三维离散元模拟. 水利与建筑工程学报. 2021(02): 1-5+18 .
    7. 李瑶,伏映鹏,廖红建,吕龙龙,董琪. 考虑吸力作用的非饱和土离散元模型及细观参数影响分析. 岩土工程学报. 2021(S1): 246-250 . 本站查看
    8. 米文静,张爱军,刘争宏,刘宏泰. 黄土自重湿陷变形的多地层离心模型试验方法. 岩土工程学报. 2020(04): 678-687 . 本站查看
    9. 蒋明镜. 现代土力学研究的新视野——宏微观土力学. 岩土工程学报. 2019(02): 195-254 . 本站查看
    10. 蒋明镜,张浩泽,李涛,张鹏. 非饱和重塑与结构性黄土等向压缩试验离散元分析. 岩土工程学报. 2019(S2): 121-124 . 本站查看

    Other cited types(14)

Catalog

    Article views (327) PDF downloads (211) Cited by(24)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return