• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HUANG Wei, LIU Qing-bing, XIANG Wei, LANG Lin-zhi, CUI De-shan, WANG Jing-e. Hydration mechanism and microscopic water retention model of clay at high suction range[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1268-1276. DOI: 10.11779/CJGE201807013
Citation: HUANG Wei, LIU Qing-bing, XIANG Wei, LANG Lin-zhi, CUI De-shan, WANG Jing-e. Hydration mechanism and microscopic water retention model of clay at high suction range[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1268-1276. DOI: 10.11779/CJGE201807013

Hydration mechanism and microscopic water retention model of clay at high suction range

More Information
  • Received Date: May 17, 2017
  • Published Date: July 24, 2018
  • The water retention curves of three montmorillonites are measured using the water vapor adsorption method at the high suction range. Two generalized hydration models and corresponding methods to predict the cation exchange capacity (CEC) and specific surface area (SSA) are proposed based on the XRD results and BET theory. Moreover, the microscopic water retention model at extremely high suction range (ψ>250 MPa) is derived from interaction energy between cation and water molecule dipole given that the retention capacity is affected merely by the interlayer cation hydration when RH is below 0.15. The results show that the hydration sequence of montmorillonite depends on the hydration energy of interlayer cation. For the cation with low hydration energy, the water absorbs firstly on external surface of clay tactoids followed by absorption into interlayer. Otherwise, the water absorbs directly within interlayer space. The predicted values of CEC and SSA agree well with the measured ones, and the derived microscopic model, taking into account of the effect of CEC, cation valence and radius on the suction potential, can predict the suction value accurately upon comparison with the reported data in literatures.
  • [1]
    LLORET A, VILLAR M V.Advances on the knowledge of the thermo-hydro-mechanical behaviour of heavily compacted “FEBEX” bentonite[J]. Physics and Chemistry of the Earth, 2007, 32(8): 701-715.
    [2]
    孙文静, 孙德安, 刘仕卿, 等. 高吸力下高庙子钙基膨润土的土水-力学特性[J]. 岩土工程学报, 2014, 36(2): 346-353.
    (SUN Wen-jing, SUN De-an, LIU Shi-qing, et al.Hydro-mechanical behaviour of GMZ Ca-bentonite at high suctions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 346-353. (in Chinese))
    [3]
    YE W M, WAN M, CHEN B, et al.Effect of temperature on soil-water characteristics and hysteresis of compacted Gaomiaozi bentonite[J]. J Cent South Univ Technol, 2009, 16: 821-826.
    [4]
    TANG A M, CUI Y J.Controlling suction by vapour equilibrium technique at different temperatures, application to the determination of the water retention properties of MX80 clay[J]. Canadian Geotechnical Journal, 2005, 42(1): 287-296.
    [5]
    JACINTO A C, VILLAR M V, GÓMEZ-ESPINA R, et al. Adaptation of the van Genuchten expression to the effects of temperature and density for compacted bentonites[J]. Applied Clay Science, 2009, 42(3/4): 575-582.
    [6]
    SPOSITO G, PROST R.Structure of water adsorbed on smectites[J]. Chemical Reviews, 1982, 82(6): 553-573.
    [7]
    CASES J M, BEREND I, BESSON G, et al.Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite 1: the sodium-exchanged form[J]. Langmuir, 1992, 8(11): 2730-2739.
    [8]
    CASES J M.Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite 3: the Mg2+, Ca2+, Sr2+ and Ba2+ Exchanged Forms[J]. Clays & Clay Minerals, 1997, 45(1): 8-22.
    [9]
    BEREND I, CASES J M, FRANCOIS M, et al.Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites 2: the Li+, Na+, K+, Rb+and Cs+-exchanged forms[J]. Clays & Clay Minerals, 1995, 43(3): 324-336.
    [10]
    SILVA O, GRIFOLL J.A soil‐water retention function that includes the hyper-dry region through the BET adsorption isotherm[J]. Water Resources Research, 2007, 431(11): 398-408.
    [11]
    HATCH C D, WIESE J S, CRANE C C, et al.Water adsorption on clay minerals as a function of relative humidity: application of bet and freundlich adsorption models[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2012, 28(3): 1790.
    [12]
    MOONEY R W, KEENAN A G, WOOD L A.Adsorption of water vapor by montmorillonite i: heat of desorption and application of BET theory1[J]. Journal of the American Chemical Society, 1952, 74(6): 1367-1374.
    [13]
    DIOS C G, HUERTAS F J, ROMERO T E, et al.Adsorption of water vapor by homoionic montmorillonites: heats of adsorption and desorption[J]. Journal of Colloid & Interface Science, 1997, 185(2): 343-354.
    [14]
    KHORSHIDI M, LU N, AKIN I D, et al.Intrinsic relationship between specific surface area and soil water retention[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2016, 143(1): 04016078.
    [15]
    WOODRUFF W F, REVIL A.CEC-normalized clay-water sorption isotherm[J]. Water Resour Res, 2011, 47: 553-561.
    [16]
    REVIL A, LU N.Unified water isotherms for clayey porous materials[J]. Water Resources Research, 2013, 49(9): 5685-5699.
    [17]
    AKIN I D.Clay surface properties by water vapor sorption methods[D]. Madison: University of Wisconsin-Madison, 2014.
    [18]
    MORODOME S, KAWAMURA K.Swelling behavior of Na- and Ca-montmorillonite up to 150°C by in situ X-ray diffraction experiments[J]. Clays & Clay Minerals, 2009, 57(2): 150-160.
    [19]
    FERRAGE, LANSON E, SAKHAROV B, et al.Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: part I. Montmorillonite hydration properties[J]. American Mineralogist, 2005, 90(8/9): 1358-1374.
    [20]
    BOHN H L, MCNEAL B L.Soil chemistry[M]. 2nd ed. New York: JohnWiley, 1985.
    [21]
    近藤精一, 石川达雄, 安部郁夫. 吸附科学[M]. 李国希, 译. 北京: 化学工业出版社, 2005.
    (KONDO S, ISHIKAWA T, ABE I.Adsorption science[M]. LI Guo-xi, tran. Beijing: Chemical Industry Press, 2005. (in Chinese))
    [22]
    ISRAELACHVILI J N.Intermolecular and surface forces[M]. 3rd ed. Amsterdam: Elsevier, 2011.
    [23]
    FORESTIER L L, MULLER F, VILLIERAS F, et al.Textural and hydration properties of a synthetic montmorillonite compared with a natural Na-exchanged clay analogue[J]. Applied Clay Science, 2010, 48(1): 18-25.
    [24]
    LIKOS W J, LU N.Pore-scale analysis of bulk volume change from crystalline interlayer swelling in Na+- and Ca2+-smectite[J]. Clays & Clay Minerals, 2006, 54(4): 515-528.
    [25]
    NITAO J J, BEAR J.Potentials and their role in transport in porous media[J]. Water Resource Res, 1996, 32(2): 225-250.
    [26]
    MOONEY R W, KEENAN A G, WOOD L A.Adsorption of water vapor by montmorillonite: II effect of exchangeable Ions and lattice swelling as measured by X-Ray diffraction[J]. Journal of the American Chemical Society, 1952, 74(6): 1367-1374.
    [27]
    KEREN R.Water vapor isotherms and heat of immersion of Na/Ca-Montmorillonite systems—I: homoionic clay[J]. Clays & Clay Minerals, 1975, 23(3): 193-200.
  • Cited by

    Periodical cited type(8)

    1. 王亚军,白晨帆,蒋应军,李瀚盛,范江涛,袁可佳. 挤密桩对大厚度黄土地基浸水沉降的影响. 铁道建筑. 2025(02): 126-133 .
    2. 李琳,王家鼎,谷琪,张登飞,焦少通. 古土壤层间富水对黄土场地湿陷性的影响. 西北大学学报(自然科学版). 2024(01): 72-83 .
    3. 黄华,刘瑞阳,刘笑笑,柳明亮. 黄土湿陷特性及其改性方法研究进展. 建筑科学与工程学报. 2024(02): 1-16 .
    4. 雷勇. 高压喷射气体劈裂湿陷性黄土效果研究. 铁道建筑技术. 2024(06): 20-24 .
    5. 胡锦方,潘亮,张爱军,任文渊,梁志超. 棉秆纤维EPS颗粒轻量土配合比设计. 水利水运工程学报. 2023(01): 112-119 .
    6. 徐硕昌,刘德仁,王旭,安政山,张转军,金芯. 重塑非饱和黄土浸水入渗规律的模型试验研究. 水利水运工程学报. 2023(01): 140-148 .
    7. 牛丽思,张爱军,王毓国,任文渊,张婉. 湿度和密度变化下伊犁黄土的压缩和湿陷特性. 水力发电学报. 2021(02): 167-176 .
    8. 王文辉,何毅,张立峰,陈有东,唐源蔚,邱丽莎,张新秀. 基于PS-InSAR和GeoDetector的兰州主城区地表变形监测与驱动力分析. 兰州大学学报(自然科学版). 2021(03): 382-388+394 .

    Other cited types(8)

Catalog

    Article views PDF downloads Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return