Citation: | YE Wei-min, LIU Zhang-rong, CUI Yu-jun. Advances in gas permeation problems of buffer/backfill materials in high-level radioactive waste geological repository[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1125-1134. DOI: 10.11779/CJGE201806019 |
[1] |
王驹. 高水平放射性废物地质处置: 关键科学问题和相关进展[J]. 科技导报, 2016, 34(15): 51-55.
(WANG Ju.Geological disposal of high level radioactive waste: Key scientific issues and progress in China[J]. Science & Technology Review, 2016, 34(15): 51-55. (In Chinese)) |
[2] |
National Research Council (US) Committee on Waste Disposal. The disposal of radioactive Waste on Land[M]. Washington D C: National Academies Press (US), 1957.
|
[3] |
崔玉军, 陈宝. 高放核废物地质处置中工程屏障研究新进展[J]. 岩石力学与工程学报, 2006, 25(4): 842-847.
(CUI Yu-jun, CHEN Bao.Recent advances in research on engineered barrier for geological disposal of high-level radioactive nuclear waste[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 842-847. (In Chinese)) |
[4] |
GARRICK B J, ABKOWITZ M D, ARNOLD W H, et al.Survey of national programs for managing high-level radioactive waste and spent nuclear fuel: a report to Congress and the Secretary of Energy[R]. Arlington: US Nuclear Waste Technical Review Board, 2016.
|
[5] |
ORTIZ L, VOLCKAERT G, MALLANTS D.Gas generation and migration in Boom Clay, a potential host rock formation for nuclear waste storage[J]. Engineering Geology, 2002, 64(2): 287-296.
|
[6] |
LIU J F, DAVY C A,TALANDIER J, et al.Effect of gas pressure on the sealing efficiency of compacted bentonite-sand plugs[J]. Journal of Contaminant Hydrology, 2014, 170: 10-27.
|
[7] |
PUSCH R, FORSBERG T.Gas migration through bentonite clay[R]. Luleå: University of Luleå, 1983.
|
[8] |
WANG J, SU R, CHEN W M, et al.Deep geological disposal of high-level radioactive wastes in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 649-658.
|
[9] |
BONIN B, COLIN M, DUTFOY A.Pressure building during the early stages of gas production in a radioactive waste repository[J]. Journal of Nuclear Materials, 2000, 281(1): 1-14.
|
[10] |
REARDON E J.Anaerobic corrosion of granular iron measurement and interpretation of hydrogen evolution rates[J]. Environmental Science & Technology, 1995, 29(12): 2936-2945.
|
[11] |
XU T F, SENGER R, FINSTERLE S.Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase ?ow effects[J]. Applied Geochemistry, 2008, 23(12): 3423-3433.
|
[12] |
JOSHI P S, VENKATESWARAN G, VENKATESWARLU K S, et al.Stimulated decomposition of Fe(OH)2 in the in the presence of AVT chemicals and metallic surfaces-relevance to low-temperature feedwater line corrosion[J]. Corrosion, 1993, 49(4): 300-309.
|
[13] |
SCHÜTZ M K, SCHLEGEL M L, LIBERT M, et al. Impact of iron-reducing bacteria on the corrosion rate of carbon steel under simulated geological disposal conditions[J]. Environmental Science & Technology, 2015, 49(12): 7483-7490.
|
[14] |
JOHNSON L, KING F.The effect of the evolution of environmental conditions on the corrosion evolutionary path in a repository for spent fuel and high-level waste in Opalinus Clay[J]. Journal of Nuclear Materials, 2008, 379: 9-15.
|
[15] |
AVIS J, SUCKLING P, CALDER N, et al.T2GGM: a coupled gas generation model for deep geologic disposal of radioactive waste[J]. Nuclear Technology, 2014, 187(2): 175-187.
|
[16] |
SENGER R, MARSCHALL P, FINSTERLE S.Investigation of two phase ?ow phenomena associated with corrosion in an SF/HLW repository in Opalinus Clay, Switzerland[J]. Physics and Chemistry of the Earth, 2008, 33(S1): 317-326.
|
[17] |
VARDON P J, NICHOLSON D, CHEN Q, et al.Simulation of repository gas migration in a bentonite buffer[J]. Engineering & Computational Mechanics, 2014, 167(1): 13-22.
|
[18] |
NERETNIEKS I.Some aspects of the use of iron canisters in deep lying repositories for nuclear waste (Technical report TR 85-35.)[R]. Baden: NAGRA, 1985.
|
[19] |
MASUM S A, VARDON P J, THOMAS H R, et al.Multicomponent gas flow through compacted clay buffer in a higher activity radioactive waste geological disposal facility[J]. Mineralogical Magazine, 2012, 76(8): 3337-3344.
|
[20] |
HALAYKO K S G. Gas flow in compacted clays[D]. Manitoba: University of Manitoba, 1998.
|
[21] |
MARSCHALL P, HORSEMAN S, GIMMI T.Characterisation of gas transport properties of the Opalinus Clay, a potential host rock formation for radioactive waste disposal[J]. Oil & Gas Science and Technology-Rev. IFP, 2005, 60(1): 121-139.
|
[22] |
NAGRA. Effects of post-disposal gas generation in a repository for low-and intermediate-level waste sited in the opalinus clay of northern switzerland[R]. Baden: NAGRA, 2008.
|
[23] |
JACOPS E, VOLCKAERT G, MAES N, et al. Determination of gas diffusion coefficients in saturated porous media: He and CH4 diffusion in Boom Clay[J]. Applied Clay Science, 2013, 83-84(10): 217-223.
|
[24] |
SATO S, OTSUKA T, KURODA Y, et al.Diffusion of helium in water-saturated, compacted sodium montmorillonite[J]. Journal of Nuclear Science and Technology, 2001, 38(7): 577-580.
|
[25] |
YANG T Z, PENG X J, LIU Y N, et al.A simulation study on the mitigation capability of bentonite backfill to gaseous radionuclides[J]. Chinese Journal of Chemical Physics, 2003, 16(5): 379-384.
|
[26] |
GALLÉ C.Gas breakthrough pressure in compacted Fo-Ca clay and interfacial gas overpressure in waste disposal context[J]. Applied Clay Science, 2000, 17(1): 85-97.
|
[27] |
GRAHAM J, HALAYKO K G, HUME H, et al.A capillary-advective model for gas break-through in clays[J]. Engineering Geology, 2002, 64: 273-286.
|
[28] |
YE W M, XU L, CHEN B, et al.An approach based on two-phase ?ow phenomenon for modeling gas migration in saturated compacted bentonite[J]. Engineering Geology, 2014, 169(2): 124-132.
|
[29] |
HORSEMAN S T, HARRINGTON J F, SELLIN P.Gas migration in clay barriers[J]. Engineering Geology, 1999, 54: 139-149.
|
[30] |
HARRINGTON J F, HORSEMAN S T.Gas migration in KBS-3 buffer bentonite: sensitivity of test parameters to experimental boundary conditions (SKB Technical Report, TR-03-02) [R]. Stockholm: SKB, 2003.
|
[31] |
VILLAR M V, GUTIÉRREZ-RODRIGO V, MARTÍN P L, et al. Gas transport in bentonite[R]. Madrid: Departmento de Medio Ambiente, 2013.
|
[32] |
SELLIN P, LEUPIN O X.The use of clay as an engineered barrier in radioactive-waste management - a review[J]. Clays & Clay Minerals, 2013, 61(6): 477-498.
|
[33] |
OLIVELLA S, ALONSO E E.Gas ?ow through clay barriers[J]. Géotechnique, 2008, 58(3): 157-176.
|
[34] |
XU W J, SHAO H, HESSER J, et al.Coupled multiphase ?ow and elasto-plastic modeling of in-situ gas injection experiments in saturated claystone (mont terri rock laboratory)[J]. Engineering Geology, 2013, 157(8): 55-68.
|
[35] |
SIEMENS G, BLATZ J A, RUTH D.A capillary-tube model for two-phase transient flow through bentonite materials[J]. Canadian Geotechnical Journal, 2007, 44(12): 1446-1461.
|
[36] |
CUSS R, HARRINGTON J, GIOT R, et al.Experimental observations of mechanical dilation at the onset of gas ?ow in Callovo-Oxfordian claystone[J]. Geological Society London Special Publications, 2014, 400(1): 507-519.
|
[37] |
GRAHAM C C, HARRINGTON J F, SELLIN P. Gas migration in pre-compacted bentonite under elevated pore-water pressure conditions[J]. Applied Clay Science, 2016: 132-133, 353-365.
|
[38] |
CUSS R J, HARRINGTON J F, NOY D J, et al.Evidence of localised gas propagation pathways in a field-scale bentonite engineered barrier system: results from three gas injection tests in the large scale gas injection test (Lasgit)[J]. Applied Clay Science, 2014, 102: 81-92.
|
[39] |
GRAHAM C C, HARRINGTON J F, CUSS R J, et al.Gas migration experiments in bentonite: implications for numerical modelling[J]. Mineralogical Magazine, 2012, 76(8): 3279-3292.
|
[40] |
DELAHAYE C H, ALONSO E E.Soil heterogeneity and preferential paths for gas migration[J]. Engineering Geology, 2002, 64(2): 251-271.
|
[41] |
ALONSO E E, OLIVELLA S, ARNEDO D.Mechanisms of gas transport in clay barriers[J]. Journal of Iberian Geology, 2006, 32(2): 175-196.
|
[42] |
HARRINGTON J F, MILODOWSKI A E, GRAHAM C C, et al.Evidence for gas-induced pathways in clay using a nanoparticle injection technique[J]. Mineralogical Magazine, 2012, 76(8): 3327-3336.
|
[43] |
WISEALL A C, CUSS R J, GRAHAM C C, et al.The visualization of flow paths in experimental studies of clay-rich materials[J]. Mineralogical Magazine, 2015, 79(6): 1335-1342.
|
[44] |
TANAI K, YUI M.A study on gas migration behavior in buffer material using X-ray CT method[J]. Mrs Online Proceeding Library, 2006, 932: 127-134.
|
[45] |
BOND A E, THATCHER K E, NORRIS S.Multi-scale gas transport modelling for the EC FORGE project[J]. Mineralogical Magazine, 2015, 79(6): 1251-1263.
|
[46] |
CUSS R J, HARRINGTON J F, NOY D J, et al.Final report of FORGE WP3.1.1: The large scale gas injection test (Lasgit) performed at the Äspö Hard Rock Laboratory[R]. Nottingham: British Geological Survey, 2012.
|
[47] |
FUJIWARA A, OKAMOTO S, TSUBOYA T, et al.Gas migration test at the grimsel test site[J]. Chinese Journal of Rock Mechanics & Engineering, 2006, 25(4): 781-787.
|
[48] |
LIU J F, SKOCZYLAS F, LIU J.Experimental research on water retention and gas permeability of compacted bentonite/sand mixtures[J]. Soils and Foundations, 2014, 54(5): 1027-1038.
|
[49] |
MANCA D.Hydro-chemo-mechanical characterisation of sand/bentonite mixtures, with a focus on the water and gas transport properties[D]. Lausanne: École polytechnique fédérale de Lausanne, 2015.
|
[50] |
HUME H B.Gas breakthrough in compacted Avonlea bentonite[D]. Winnipeg: University of Manitoba, 1999.
|
[51] |
TANAI K, KANO T, GALLÉC. Experimental study of gas permeabilities and breakthrough pressures in clays[J]. Mrs Online Proceeding Library, 1996, 465: 995-1002.
|
[52] |
MANCA D, MONFARED M, FERRARI A, et al.Gas injection tests on a sand bentonite mixture: investigation on the effect of pore water chemistry[C]// FORGE Symposium, Luxembourg, 2013.
|
[53] |
LLORET A, VILLAR M V.Advances on the knowledge of the thermo-hydro-mechanical behaviour of heavily compacted ‘‘FEBEX’’ bentonite[J]. Physics & Chemistry of the Earth, 2007, 32: 701-715.
|
[54] |
GALLÉ C, TANAI K.Evaluation of gas transport properties of backfill materials for waste disposal: H2 migration experiments in compacted Fo-Ca Clay[J]. Clays & Clay Minerals, 1998, 46(5): 498-508.
|
[55] |
LIU J F, SKOCZYLAS F, TALANDIER J.Gas permeability of a compacted bentonite-sand mixture: coupled effects of water content, dry density, and confining pressure[J]. Canadian Geotechnical Journal, 2015, 52(8): 1159-1167.
|
[56] |
高玉峰. 北山地下水对膨润土力学和渗气特性影响研究[D]. 北京: 核工业北京地质研究院, 2016.
(GAO Yu-feng.Research on the impact on mechanical property and gas pemeability of bentonite by Beishan groundwater[D]. Beijing: Beijing Research Institute of Uranium Geology, 2016. (in Chinese)) |
[57] |
刘龙波, 王旭辉, 张自禄, 等. 不饱和膨润土中气体渗透研究[J]. 水文地质工程地质, 2002(6): 26-29, 25.
(LIU Long-bo, WANG Xu-hui, ZHANG Zi-lu, et al.Study on gas permeability of the unsaturated bentonites[J]. Hydrogeology & Engineering Geology, 2002(6): 26-29, 25. (in Chinese)) |
[58] |
汪龙, 方祥位, 申春妮, 等. 膨润土-砂混合型缓冲/回填材料渗气规律试验研究[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3381-3388.
(WANG Long, FANG Xiang-wei, SHEN Chun-ni, et al.Experimental study of gas permeability of bentonite-sand mixtures as buffer/backfilling materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3381-3388. (in Chinese)) |
[59] |
秦冰, 陆飏, 张发忠, 等. 考虑Klinkenberg 效应的压实膨润土渗气特性研究[J]. 岩土工程学报, 2016, 38(12): 2194-2202.
(QIN Bing, LU Yang, ZHANG Fa-zhong, et al.Study on gas permeability of compacted bentonite with consideration of the Klinkenberg effect[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2194-2202. (in Chinese)) |
[60] |
JUSTINAVICIUS D, POSKAS P.Temperature and tortuosity effect on gas migration in a high-level waste disposal tunnel[J]. Mineralogical Magazine, 2015, 79(6): 1317-1325.
|