• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YE Wei-min, LIU Zhang-rong, CUI Yu-jun. Advances in gas permeation problems of buffer/backfill materials in high-level radioactive waste geological repository[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1125-1134. DOI: 10.11779/CJGE201806019
Citation: YE Wei-min, LIU Zhang-rong, CUI Yu-jun. Advances in gas permeation problems of buffer/backfill materials in high-level radioactive waste geological repository[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1125-1134. DOI: 10.11779/CJGE201806019

Advances in gas permeation problems of buffer/backfill materials in high-level radioactive waste geological repository

More Information
  • Received Date: March 07, 2017
  • Published Date: June 24, 2018
  • A brief introduction is given to the findings and the latest advances in the mechanism of gas generation and migration, the testing equipments and methodologies as well as the properties of gas migration. The results show that the hydrogen based multi-component is generated during the operation of the repository, mainly resulting from the anaerobic corrosion of iron. There are four mechanisms for describing the gas migration in the buffer/backfill materials, including the advection-diffusion of gases dissolved in ground-water, visco-capillary two-phase flow, local dilated pathway flow and macroscopic fracture flow. Therefore, gas permeation devices for tests under the constant volume, K0 confined, isotropic stress and triaxial conditions are successively developed. Numerous gas injection tests are conducted using the gas flow-rate control or injection pressure control methods. It is shown that the gas permeability and characteristic pressures are influenced by many factors, including the physical properties and boundary conditions of the samples tested. Considering the complexity of the operation conditions for the buffer/backfill materials in a deep geological repository, investigations on the gas permeation under multi-field (thermo-hydro-chemical-mechanical) and multi-phase (solid-liquid-gas) coupled conditions should be a very important work to be conducted.
  • [1]
    王驹. 高水平放射性废物地质处置: 关键科学问题和相关进展[J]. 科技导报, 2016, 34(15): 51-55.
    (WANG Ju.Geological disposal of high level radioactive waste: Key scientific issues and progress in China[J]. Science & Technology Review, 2016, 34(15): 51-55. (In Chinese))
    [2]
    National Research Council (US) Committee on Waste Disposal. The disposal of radioactive Waste on Land[M]. Washington D C: National Academies Press (US), 1957.
    [3]
    崔玉军, 陈宝. 高放核废物地质处置中工程屏障研究新进展[J]. 岩石力学与工程学报, 2006, 25(4): 842-847.
    (CUI Yu-jun, CHEN Bao.Recent advances in research on engineered barrier for geological disposal of high-level radioactive nuclear waste[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 842-847. (In Chinese))
    [4]
    GARRICK B J, ABKOWITZ M D, ARNOLD W H, et al.Survey of national programs for managing high-level radioactive waste and spent nuclear fuel: a report to Congress and the Secretary of Energy[R]. Arlington: US Nuclear Waste Technical Review Board, 2016.
    [5]
    ORTIZ L, VOLCKAERT G, MALLANTS D.Gas generation and migration in Boom Clay, a potential host rock formation for nuclear waste storage[J]. Engineering Geology, 2002, 64(2): 287-296.
    [6]
    LIU J F, DAVY C A,TALANDIER J, et al.Effect of gas pressure on the sealing efficiency of compacted bentonite-sand plugs[J]. Journal of Contaminant Hydrology, 2014, 170: 10-27.
    [7]
    PUSCH R, FORSBERG T.Gas migration through bentonite clay[R]. Luleå: University of Luleå, 1983.
    [8]
    WANG J, SU R, CHEN W M, et al.Deep geological disposal of high-level radioactive wastes in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 649-658.
    [9]
    BONIN B, COLIN M, DUTFOY A.Pressure building during the early stages of gas production in a radioactive waste repository[J]. Journal of Nuclear Materials, 2000, 281(1): 1-14.
    [10]
    REARDON E J.Anaerobic corrosion of granular iron measurement and interpretation of hydrogen evolution rates[J]. Environmental Science & Technology, 1995, 29(12): 2936-2945.
    [11]
    XU T F, SENGER R, FINSTERLE S.Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase ?ow effects[J]. Applied Geochemistry, 2008, 23(12): 3423-3433.
    [12]
    JOSHI P S, VENKATESWARAN G, VENKATESWARLU K S, et al.Stimulated decomposition of Fe(OH)2 in the in the presence of AVT chemicals and metallic surfaces-relevance to low-temperature feedwater line corrosion[J]. Corrosion, 1993, 49(4): 300-309.
    [13]
    SCHÜTZ M K, SCHLEGEL M L, LIBERT M, et al. Impact of iron-reducing bacteria on the corrosion rate of carbon steel under simulated geological disposal conditions[J]. Environmental Science & Technology, 2015, 49(12): 7483-7490.
    [14]
    JOHNSON L, KING F.The effect of the evolution of environmental conditions on the corrosion evolutionary path in a repository for spent fuel and high-level waste in Opalinus Clay[J]. Journal of Nuclear Materials, 2008, 379: 9-15.
    [15]
    AVIS J, SUCKLING P, CALDER N, et al.T2GGM: a coupled gas generation model for deep geologic disposal of radioactive waste[J]. Nuclear Technology, 2014, 187(2): 175-187.
    [16]
    SENGER R, MARSCHALL P, FINSTERLE S.Investigation of two phase ?ow phenomena associated with corrosion in an SF/HLW repository in Opalinus Clay, Switzerland[J]. Physics and Chemistry of the Earth, 2008, 33(S1): 317-326.
    [17]
    VARDON P J, NICHOLSON D, CHEN Q, et al.Simulation of repository gas migration in a bentonite buffer[J]. Engineering & Computational Mechanics, 2014, 167(1): 13-22.
    [18]
    NERETNIEKS I.Some aspects of the use of iron canisters in deep lying repositories for nuclear waste (Technical report TR 85-35.)[R]. Baden: NAGRA, 1985.
    [19]
    MASUM S A, VARDON P J, THOMAS H R, et al.Multicomponent gas flow through compacted clay buffer in a higher activity radioactive waste geological disposal facility[J]. Mineralogical Magazine, 2012, 76(8): 3337-3344.
    [20]
    HALAYKO K S G. Gas flow in compacted clays[D]. Manitoba: University of Manitoba, 1998.
    [21]
    MARSCHALL P, HORSEMAN S, GIMMI T.Characterisation of gas transport properties of the Opalinus Clay, a potential host rock formation for radioactive waste disposal[J]. Oil & Gas Science and Technology-Rev. IFP, 2005, 60(1): 121-139.
    [22]
    NAGRA. Effects of post-disposal gas generation in a repository for low-and intermediate-level waste sited in the opalinus clay of northern switzerland[R]. Baden: NAGRA, 2008.
    [23]
    JACOPS E, VOLCKAERT G, MAES N, et al. Determination of gas diffusion coefficients in saturated porous media: He and CH4 diffusion in Boom Clay[J]. Applied Clay Science, 2013, 83-84(10): 217-223.
    [24]
    SATO S, OTSUKA T, KURODA Y, et al.Diffusion of helium in water-saturated, compacted sodium montmorillonite[J]. Journal of Nuclear Science and Technology, 2001, 38(7): 577-580.
    [25]
    YANG T Z, PENG X J, LIU Y N, et al.A simulation study on the mitigation capability of bentonite backfill to gaseous radionuclides[J]. Chinese Journal of Chemical Physics, 2003, 16(5): 379-384.
    [26]
    GALLÉ C.Gas breakthrough pressure in compacted Fo-Ca clay and interfacial gas overpressure in waste disposal context[J]. Applied Clay Science, 2000, 17(1): 85-97.
    [27]
    GRAHAM J, HALAYKO K G, HUME H, et al.A capillary-advective model for gas break-through in clays[J]. Engineering Geology, 2002, 64: 273-286.
    [28]
    YE W M, XU L, CHEN B, et al.An approach based on two-phase ?ow phenomenon for modeling gas migration in saturated compacted bentonite[J]. Engineering Geology, 2014, 169(2): 124-132.
    [29]
    HORSEMAN S T, HARRINGTON J F, SELLIN P.Gas migration in clay barriers[J]. Engineering Geology, 1999, 54: 139-149.
    [30]
    HARRINGTON J F, HORSEMAN S T.Gas migration in KBS-3 buffer bentonite: sensitivity of test parameters to experimental boundary conditions (SKB Technical Report, TR-03-02) [R]. Stockholm: SKB, 2003.
    [31]
    VILLAR M V, GUTIÉRREZ-RODRIGO V, MARTÍN P L, et al. Gas transport in bentonite[R]. Madrid: Departmento de Medio Ambiente, 2013.
    [32]
    SELLIN P, LEUPIN O X.The use of clay as an engineered barrier in radioactive-waste management - a review[J]. Clays & Clay Minerals, 2013, 61(6): 477-498.
    [33]
    OLIVELLA S, ALONSO E E.Gas ?ow through clay barriers[J]. Géotechnique, 2008, 58(3): 157-176.
    [34]
    XU W J, SHAO H, HESSER J, et al.Coupled multiphase ?ow and elasto-plastic modeling of in-situ gas injection experiments in saturated claystone (mont terri rock laboratory)[J]. Engineering Geology, 2013, 157(8): 55-68.
    [35]
    SIEMENS G, BLATZ J A, RUTH D.A capillary-tube model for two-phase transient flow through bentonite materials[J]. Canadian Geotechnical Journal, 2007, 44(12): 1446-1461.
    [36]
    CUSS R, HARRINGTON J, GIOT R, et al.Experimental observations of mechanical dilation at the onset of gas ?ow in Callovo-Oxfordian claystone[J]. Geological Society London Special Publications, 2014, 400(1): 507-519.
    [37]
    GRAHAM C C, HARRINGTON J F, SELLIN P. Gas migration in pre-compacted bentonite under elevated pore-water pressure conditions[J]. Applied Clay Science, 2016: 132-133, 353-365.
    [38]
    CUSS R J, HARRINGTON J F, NOY D J, et al.Evidence of localised gas propagation pathways in a field-scale bentonite engineered barrier system: results from three gas injection tests in the large scale gas injection test (Lasgit)[J]. Applied Clay Science, 2014, 102: 81-92.
    [39]
    GRAHAM C C, HARRINGTON J F, CUSS R J, et al.Gas migration experiments in bentonite: implications for numerical modelling[J]. Mineralogical Magazine, 2012, 76(8): 3279-3292.
    [40]
    DELAHAYE C H, ALONSO E E.Soil heterogeneity and preferential paths for gas migration[J]. Engineering Geology, 2002, 64(2): 251-271.
    [41]
    ALONSO E E, OLIVELLA S, ARNEDO D.Mechanisms of gas transport in clay barriers[J]. Journal of Iberian Geology, 2006, 32(2): 175-196.
    [42]
    HARRINGTON J F, MILODOWSKI A E, GRAHAM C C, et al.Evidence for gas-induced pathways in clay using a nanoparticle injection technique[J]. Mineralogical Magazine, 2012, 76(8): 3327-3336.
    [43]
    WISEALL A C, CUSS R J, GRAHAM C C, et al.The visualization of flow paths in experimental studies of clay-rich materials[J]. Mineralogical Magazine, 2015, 79(6): 1335-1342.
    [44]
    TANAI K, YUI M.A study on gas migration behavior in buffer material using X-ray CT method[J]. Mrs Online Proceeding Library, 2006, 932: 127-134.
    [45]
    BOND A E, THATCHER K E, NORRIS S.Multi-scale gas transport modelling for the EC FORGE project[J]. Mineralogical Magazine, 2015, 79(6): 1251-1263.
    [46]
    CUSS R J, HARRINGTON J F, NOY D J, et al.Final report of FORGE WP3.1.1: The large scale gas injection test (Lasgit) performed at the Äspö Hard Rock Laboratory[R]. Nottingham: British Geological Survey, 2012.
    [47]
    FUJIWARA A, OKAMOTO S, TSUBOYA T, et al.Gas migration test at the grimsel test site[J]. Chinese Journal of Rock Mechanics & Engineering, 2006, 25(4): 781-787.
    [48]
    LIU J F, SKOCZYLAS F, LIU J.Experimental research on water retention and gas permeability of compacted bentonite/sand mixtures[J]. Soils and Foundations, 2014, 54(5): 1027-1038.
    [49]
    MANCA D.Hydro-chemo-mechanical characterisation of sand/bentonite mixtures, with a focus on the water and gas transport properties[D]. Lausanne: École polytechnique fédérale de Lausanne, 2015.
    [50]
    HUME H B.Gas breakthrough in compacted Avonlea bentonite[D]. Winnipeg: University of Manitoba, 1999.
    [51]
    TANAI K, KANO T, GALLÉC. Experimental study of gas permeabilities and breakthrough pressures in clays[J]. Mrs Online Proceeding Library, 1996, 465: 995-1002.
    [52]
    MANCA D, MONFARED M, FERRARI A, et al.Gas injection tests on a sand bentonite mixture: investigation on the effect of pore water chemistry[C]// FORGE Symposium, Luxembourg, 2013.
    [53]
    LLORET A, VILLAR M V.Advances on the knowledge of the thermo-hydro-mechanical behaviour of heavily compacted ‘‘FEBEX’’ bentonite[J]. Physics & Chemistry of the Earth, 2007, 32: 701-715.
    [54]
    GALLÉ C, TANAI K.Evaluation of gas transport properties of backfill materials for waste disposal: H2 migration experiments in compacted Fo-Ca Clay[J]. Clays & Clay Minerals, 1998, 46(5): 498-508.
    [55]
    LIU J F, SKOCZYLAS F, TALANDIER J.Gas permeability of a compacted bentonite-sand mixture: coupled effects of water content, dry density, and confining pressure[J]. Canadian Geotechnical Journal, 2015, 52(8): 1159-1167.
    [56]
    高玉峰. 北山地下水对膨润土力学和渗气特性影响研究[D]. 北京: 核工业北京地质研究院, 2016.
    (GAO Yu-feng.Research on the impact on mechanical property and gas pemeability of bentonite by Beishan groundwater[D]. Beijing: Beijing Research Institute of Uranium Geology, 2016. (in Chinese))
    [57]
    刘龙波, 王旭辉, 张自禄, 等. 不饱和膨润土中气体渗透研究[J]. 水文地质工程地质, 2002(6): 26-29, 25.
    (LIU Long-bo, WANG Xu-hui, ZHANG Zi-lu, et al.Study on gas permeability of the unsaturated bentonites[J]. Hydrogeology & Engineering Geology, 2002(6): 26-29, 25. (in Chinese))
    [58]
    汪龙, 方祥位, 申春妮, 等. 膨润土-砂混合型缓冲/回填材料渗气规律试验研究[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3381-3388.
    (WANG Long, FANG Xiang-wei, SHEN Chun-ni, et al.Experimental study of gas permeability of bentonite-sand mixtures as buffer/backfilling materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3381-3388. (in Chinese))
    [59]
    秦冰, 陆飏, 张发忠, 等. 考虑Klinkenberg 效应的压实膨润土渗气特性研究[J]. 岩土工程学报, 2016, 38(12): 2194-2202.
    (QIN Bing, LU Yang, ZHANG Fa-zhong, et al.Study on gas permeability of compacted bentonite with consideration of the Klinkenberg effect[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2194-2202. (in Chinese))
    [60]
    JUSTINAVICIUS D, POSKAS P.Temperature and tortuosity effect on gas migration in a high-level waste disposal tunnel[J]. Mineralogical Magazine, 2015, 79(6): 1317-1325.
  • Cited by

    Periodical cited type(7)

    1. 廖洁,刘斯宏,徐思远,樊科伟,于博文. 土工袋技术在乡村公路软基加固中的应用研究. 公路. 2024(06): 52-61 .
    2. 李钒,林国兵,王雅华,樊科伟. 面板对土工袋挡土墙工作性状影响的足尺试验研究. 水电能源科学. 2023(06): 133-136 .
    3. 关帅,孙嘉辉,刘越,王波,黄泽华. 纤维增强复合材料(FRP)锚索性能及其工程应用. 市政技术. 2023(08): 166-179 .
    4. 曹旻昊. 淤泥质袋装土挡墙技术研究和应用分析. 现代交通技术. 2023(05): 93-96 .
    5. 文华,杨青青,吴学宇,付文涛. 稳定固化土重力式挡土墙承载特性研究. 施工技术(中英文). 2022(20): 70-76 .
    6. 黄英豪,吴敏,陈永,王硕,王文翀,武亚军. 絮凝技术在疏浚淤泥脱水处治中的研究进展. 水道港口. 2022(06): 802-812 .
    7. 中国路基工程学术研究综述·2021. 中国公路学报. 2021(03): 1-49 .

    Other cited types(5)

Catalog

    Article views (322) PDF downloads (329) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return