• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Ji-cai, LI Neng-hui, CONG Jian, CAO Yong-lang, CAO Jun. Deformation behaviors and variable rigidity design with equilibrium settlement for CFG pile composite foundation of large storage tanks[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1111-1116. DOI: 10.11779/CJGE201806017
Citation: LI Ji-cai, LI Neng-hui, CONG Jian, CAO Yong-lang, CAO Jun. Deformation behaviors and variable rigidity design with equilibrium settlement for CFG pile composite foundation of large storage tanks[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1111-1116. DOI: 10.11779/CJGE201806017

Deformation behaviors and variable rigidity design with equilibrium settlement for CFG pile composite foundation of large storage tanks

More Information
  • Received Date: June 04, 2017
  • Published Date: June 24, 2018
  • The foundation of large storage tanks has requirements of large bearing capacity and limited differential settlement. Because the natural foundation generally cannot meet the requirements of bearing capacity and deformation, it needs to be treated. It is revealed that the settlement distribution of the foundation of storage tanks has the shape of the disc with large settlement inside and small one outside, and the settlement within the scope of 0.7R away from the center of foundation is large and has no great change(about 20%)through field tests and numerical simulations, which is defined as the core area for the foundation settlement of storage tanks. The most sensitive influencing factor to the settlement of CFG pile composite foundation of large storage tanks is the length of CFG piles. On this basis, the spatial variable rigidity design method with equilibrium settlement for the composite foundation of large storage tanks is proposed to raise the rigidity in the core settlement areas and to reduce that of the foundation in other areas. Thus the differential settlement of tank foundation is effectively reduced and the stress state of storage tank structure is improved.
  • [1]
    陈德志, 米广生, 张继军, 等. 中国大型储罐建设现状及发展趋势[J]. 石油化工建设, 2009(1): 28-32.
    (CHEN De-zhi, MI Guang-sheng, ZHANG Ji-jun, et al.Present situation and development tendency of large storage tanks in China[J]. Petroleum and Chemical Construction, 2009(1): 28-32. (in Chinese))
    [2]
    徐至钧. 大型储罐基础地基处理与工程实例[M]. 北京: 中国标准出版社, 2009.
    (XU Zhi-jun.The foundation treatment and engineering examples in large storage tank foundation[M]. Beijing: Standards Press of China, 2009. (in Chinese))
    [3]
    贾庆山. 储罐基础工程手册[M]. 北京: 中国石化出版社, 2007.
    (JIA Qin-shan.Tank foundation engineering handbook[M]. Beijing: China Petrochemical Press, 2007. (in Chinese))
    [4]
    闫明礼, 张东刚. CFG桩复合地基技术及工程实践[M]. 北京: 中国水利水电出版社, 2006.
    (YAN Ming-li, ZHANG Dong-gang.CFG pile composite foundation technology and engineering practice[M]. Beijing: China Water Power Press, 2006. (in Chinese))
    [5]
    刘影. 仪征地区10万m3储油罐地基处理方案优选及应用[J]. 石油工程建设, 2015(2): 52-56.
    (LIU Ying.Selection and application of foundation treatment of 10×104 m3 oil storage tank[J]. Petroleum and Chemical Construction, 2015(2): 52-56. (in Chinese))
    [6]
    丁小军, 王旭, 张延杰, 等. 大型油罐CFG桩复合地基变形与承载性能试验研究[J]. 岩石力学与工程学报, 2013, 32(9): 1851-1857.
    (DING Xiao-jun, WANG Xu, ZHANG Yan-jie, et al.Experimental study of bearing and deformation features of CFG-pile composite ground for large oil storage tanks[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1851-1857. (in Chinese))
    [7]
    南京水利科学研究院勘测设计院,常州金土木工程仪器有限公司. 岩土工程安全监测手册[M]. 北京: 中国水利水电出版社, 2008.
    (Survey and Design Institute of Nanjing Hydraulic Research Institute, Changzhou Civil Engineering Instrument Ltd. Geotechnical project safety monitoring manual[M]. Beijing: China Water Power Press, 2008. (in Chinese))
    [8]
    GB50473—2008钢制储罐地基基础设计规范[S]. 2009.
    (GB50473—2008 Code for design of steel tank foundation[S]. 2009. (in Chinese))
    [9]
    沈珠江. 土体应力应变分析中的一种新模型[C]// 中国土木工程学会第五届土力学及基础工程学术会议论文集. 北京, 1990.
    (SHEN Zhu-jiang.A new model for stress and strain analysis of soil[C]// Proceedings of Fifth Conference of Soil Mechanics and Foundation Engineering of China Civil Engineering Society. Beijing, 1990. (in Chinese))
  • Cited by

    Periodical cited type(29)

    1. 谢志恒,宋向荣,宋相帅,何熊. 新型盾构分散剂评价装置及泥饼分解特性研究. 施工技术(中英文). 2025(02): 148-153 .
    2. 刘朝阳,刘雪丹,朱牧原,方勇. 泥岩地层盾构改良渣土流动度评价试验. 铁道建筑. 2025(02): 89-94 .
    3. 贾思桢. 基于剪切试验的全风化花岗岩地层泡沫渣土改良研究. 四川建筑. 2024(01): 160-165 .
    4. 丁小彬,杨辉泰,施钰. EPB盾构刀盘泥饼成因分析及评价模型构建. 华南理工大学学报(自然科学版). 2024(05): 71-83 .
    5. 周志伟,郑文杰,白雪冬,武斌. 黄土黏附特性评价-室内试验和微观响应机制研究. 土木工程学报. 2024(06): 209-220 .
    6. 尹义豪,钟小春,何子良,黄思远,何纯豪,高始军,张箭. 考虑压力、温度效应的黏性土黏附强度变化规律研究. 现代隧道技术. 2024(03): 175-183 .
    7. 万泽恩,尹威方,李树忱,景少森,王海波,许钦明. 电渗透法降低黏土-金属界面黏附力的机理与试验研究. 岩土工程学报. 2024(08): 1732-1741 . 本站查看
    8. 赵兴,许佳磊,张志强. 上软下硬复合地层盾构渣土改良试验研究. 铁道标准设计. 2024(10): 150-158 .
    9. 孟善宝. 黄土地层土压平衡盾构刀盘堵塞风险研究. 铁道建筑技术. 2024(10): 63-66+89 .
    10. 杨国华. 软弱地层盾构渣土制备同步注浆浆液及工程应用. 岩土工程技术. 2024(06): 718-724 .
    11. QIN ChengJin,WU RuiHong,HUANG GuoQiang,TAO JianFeng,LIU ChengLiang. A novel LSTM-autoencoder and enhanced transformer-based detection method for shield machine cutterhead clogging. Science China(Technological Sciences). 2023(02): 512-527 .
    12. 占永杰,王树英,杨秀竹,王海波. 考虑级配影响的盾构泡沫改良粗粒土一维压缩理论计算模型. 岩土工程学报. 2023(08): 1644-1652 . 本站查看
    13. 方勇,王宇博,王凯,钱聚强,陈中天,卓彬. 基于界面黏附力盾构堵塞风险评判方法研究. 岩土工程学报. 2023(09): 1813-1821 . 本站查看
    14. 孙恒,杨擎,黄新淼,李杰华,张赟. 土压平衡盾构出渣温度实时监测系统设计与应用. 隧道建设(中英文). 2023(08): 1396-1403 .
    15. 王延辉,周天顺,胡俊山,陈海勇,施成华,彭宇,王祖贤. 高黏性黏土地层大直径泥水盾构掘进姿态失稳及其处理措施. 现代隧道技术. 2023(05): 213-223 .
    16. 周双禧. 基于量纲理论的盾构掘进扭矩计算模型. 工业建筑. 2023(S2): 500-502 .
    17. 常勇,任国平,髙始军,张箭,梁禹. 高黏性地层大直径泥水盾构刀盘结泥饼问题的处置. 工业建筑. 2023(S2): 596-601+595 .
    18. 孙云博,刘磊,李矿矿,崔超. 土压平衡盾构刀盘扭矩影响因素试验研究. 工业建筑. 2023(S2): 889-892 .
    19. 季昌,周顺华,姚琦钰,金钰寅,欧阳皖霖. 土压平衡盾构土仓内黏性渣土堵塞的模拟判别与分析. 同济大学学报(自然科学版). 2022(01): 60-69 .
    20. 周凯歌,方勇,廖杭,王凯,宋天田. 强风化混合花岗岩地层中盾构泥饼堵塞情况下渣土改良剂效果分析. 隧道建设(中英文). 2022(02): 283-290 .
    21. 魏力峰,叶来宾,黄际政,刘鹏程,方勇. 黏性地层盾构刀盘泥饼崩解特性试验研究. 隧道建设(中英文). 2022(02): 275-282 .
    22. 杨益,谭超,李兴高. 考虑温度效应的盾构法黏土-金属界面黏附力试验. 土木工程与管理学报. 2022(02): 120-125 .
    23. 杨柏超,张超. 某水利工程引水隧洞EPB盾构施工注浆压力与地表沉降关系研究. 黑龙江水利科技. 2022(04): 34-36 .
    24. 王文,潘雪瑛,赵延平,颜梦秋,陆地,陈孔磊. 土压平衡盾构刀盘泥饼堵塞改善研究. 土工基础. 2022(03): 304-307 .
    25. 朱连臣. 盾构隧道穿越泉域强富水灰岩地质掘进控制技术. 城市轨道交通研究. 2022(09): 160-165 .
    26. 马全武,赵凤凯,杨绍玉,杨星,江玉生,刘成龙. 土压平衡盾构黏土改良及其对滚刀影响的试验研究. 市政技术. 2022(11): 18-23+51 .
    27. 常嘉,胡耀越,马昊,白学涛,李宗亮. 特殊地质环境下地铁盾构造价异动测算分析. 工程经济. 2021(02): 13-18 .
    28. 张伟,赵东平,王卢伟,李栋,王德勇. 砂卵石地层大直径土压平衡盾构选型研究. 现代隧道技术. 2021(S1): 441-450 .
    29. 杨武林. 土压平衡盾构施工场地布置方法. 智能城市. 2020(24): 115-116 .

    Other cited types(11)

Catalog

    Article views PDF downloads Cited by(40)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return