• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Teng-fei, LIU Jian-kun, TAI Bo-wen, LÜ Peng. Model tests on frost jacking behaviors of helical steel piles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1084-1092. DOI: 10.11779/CJGE201806014
Citation: WANG Teng-fei, LIU Jian-kun, TAI Bo-wen, LÜ Peng. Model tests on frost jacking behaviors of helical steel piles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1084-1092. DOI: 10.11779/CJGE201806014

Model tests on frost jacking behaviors of helical steel piles

More Information
  • Received Date: December 20, 2016
  • Published Date: June 24, 2018
  • The foundations of the photovoltaic frames suffer from uneven frost heave of the soils during cold seasons, triggering generation inefficiency or even the total failure of superstructures. As a result, the helical steel piles (HSP) are widely adopted to deal with frost diseases in engineering practices. A small scale experiment is conducted to assess the jacking behaviors of different helical piles and the piles with no helix exposed to unidirectional freexing. Then, the variation laws of the temperature, jacking displacement and axial uplift force are summarized. The results indicate: (1) The average frost jacking rate ηj is determined as the reasonable index in terms of anti-jacking ability. In this study, ηj of the large half-helix pile is the least, with the value of 1.03 %, and ηj of the multi-helix one is the largest; (2) There is a linear relationship between the jacking displacement and the frost depth, and the layout of helices has impact on the development of frost jacking; (3) With the vertical displacement of the pile restrained, the axial uplift force grows exponentially over the frost depth. Thus, the research results can provide reference to address the frost jacking problems of lightweight structures in seasonally frozen regions.
  • [1]
    赵杰. 光伏发电并网系统的相关技术研究[D]. 天津: 天津大学, 2012: 1-3.
    (ZHAO Jie.Study on related technologies of grid-connected photovoltaic power system[D]. Tianjin: Tianjin University, 2012: 1-3. (in Chinese))
    [2]
    GUO L, XIE Y, YU Q, et al.Displacements of tower foundations in permafrost regions along the Qinghai-Tibet Power Transmission Line[J]. Cold Regions Science and Technology, 2016, 121: 187-195.
    [3]
    WANG T, LIU J, ZHAO H, et al.Experimental study on the anti-jacking-up performance of a screw pile for photovoltaic stents in a seasonal frozen region[J]. J Zhejiang Univ Sci A, 2016, 17(7): 512-524.
    [4]
    CHEVEREV V G, PUSTOVOIT G P, VIDYAPIN I Y, et al.Stabilization of tubular pile foundations in heaving soils[J]. Soil Mech Found Eng, 2006, 43(6): 211-227.
    [5]
    MOHAJERANI A, BOSNJAK D, BROMWICH D.Analysis and design methods of screw piles: a review[J]. Soils and Foundations, 2016, 56(1): 115-128.
    [6]
    KRASIŃSKI A. Numerical simulation of screw displacement pile interaction with non-cohesive soil[J]. Archives of Civil and Mechanical Engineering, 2014, 14(1): 122-133.
    [7]
    董天文, 梁力, 黄连壮, 等. 螺旋桩基础抗拔试验研究[J]. 岩土力学, 2009, 30(1): 186-190.
    (DONG Tian-wen, LIANG Li, HUANG Lian-zhuang, et al.Pullout test of screw pile foundation[J]. Rock and Soil Mechanics, 2009, 30(1): 186-190. (in Chinese))
    [8]
    TSUHA C H C, DOS SANTOS FILHO J M S M, SANTOS T C. Helical piles in unsaturated structured soil: a case study[J]. Canadian Geotechnical Journal, 2016, 53: 103-117.
    [9]
    SAKR M.Performance of helical piles in oil sand[J]. Canadian Geotechnical Journal, 2009, 46(8): 1046-1061.
    [10]
    LI N, XU B.A new type of pile used in frozen soil foundation[J]. Cold Reg Sci Technol, 2008, 53(3): 355-368.
    [11]
    GAVIN K, DOHERTY P, TOLOOIYAN A.Field investigation of the axial resistance of helical piles in dense sand[J]. Canadian Geotechnical Journal, 2014, 51(11): 1343-1354.
    [12]
    GU Q, YANG Z, PENG Y.Parameters affecting laterally loaded piles in frozen soils by an efficient sensitivity analysis method[J]. Cold Reg Sci Technol, 2016, 121: 42-51.
    [13]
    CHEN G S, DUANE D, HULSEY J L.Measurement of frozen soil-pile dynamic properties: a system identification approach[J]. Cold Reg Sci Technol, 2012, 70: 98-106.
    [14]
    陈然. 螺旋桩在季节性冻土场地抗冻拔性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2010: 3-20.
    (CHEN Ran.Study on anti-frost heaving characteristic of the screw piles in the seasonal frozen region[D]. Harbin: Harbin Institute of Technology, 2010: 3-20. (in Chinese))
    [15]
    王腾飞, 刘建坤, 刘晓强, 等. 季节冻土区光伏支架螺旋桩基的冻胀数值分析研究[J]. 冰川冻土, 2016, 38(4): 1167-1174.
    (WANG Teng-fei, LIU Jian-kun, LIU Xiao-qiang, et al.Numerical simulation on anti-jacking-up performance of helical piles of photovoltaic stents in seasonal frozen region[J]. Journal of Glaciology and Geocryology, 2016, 38(4): 1167-1174. (in Chinese))
    [16]
    董天文, 梁力, 王明恕, 等. 极限荷载条件下螺旋桩的螺距设计与承载力计算[J]. 岩土工程学报, 2006, 28(11): 2031-2034.
    (DONG Tian-wen, LIANG Li, WANG Ming-shu, et al.Pitch of screws and bearing capacity of screw piles under ultimate load[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 2031-2034. (in Chinese))
    [17]
    董天文, 梁力. 竖向受压螺旋桩荷载沉降函数解[J]. 岩土工程学报, 2007, 29(10): 1483-1487.
    (DONG Tian-wen, LIANG Li.Solution of load-settlement function of single screw pile under axial pressure[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1483-1487. (in Chinese))
    [18]
    田亚护, 刘建坤, 彭丽云. 动、静荷载作用下细粒土的冻胀特性试验研究[J]. 岩土工程学报, 2010, 32(12): 1882-1887.
    (TIAN Ya-hu, LIU Jian-kun, PENG Li-yun.Experimental study on frost action of fine-grained soils under dynamic and static loads[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1882-1887. (in Chinese))
    [19]
    刘谌. 粉质黏土纯盐胀试验研究及经验模型分析[D]. 北京: 北京交通大学, 2016: 30-33.
    (LIU Chen.Investigation of the silty clay pure salt expansion and experience model[D]. Beijing: Beijing Jiaotong University, 2016: 30-33. (in Chinese))
    [20]
    聂志红, 刘源, 王翔. 客运专线基床表层级配碎石冻胀影响因素的试验研究[J]. 铁道科学与工程学报, 2013, 10(4): 59-62.
    (NIE Zhi-hong, LIU Yuan, WANG Xiang.Experimental study on frozen-heave influence factors for graded gravel in surface layer of passenger dedicated line[J]. Journal of Railway Science and Engineering, 2013, 10(4): 59-62. (in Chinese))
    [21]
    CHONG Tang, KOK-KWANG Phoon.Model uncertainty of cylindrical shear method for calculating the uplift capacity of helical anchors in clay[J]. Engineering Geology, 2016, 207: 14-23.
    [22]
    AKILI W.Stress-strain behavior of frozen find-grained soils[J]. Highw Res Rec, 1971, 360: 1-8.
    [23]
    LIU Jian-kun, LÜ Peng, CUI Ying-hui, et al.Experimental study on direct shear behavior of frozen soil-concrete interface[J]. Cold Reg Sci Technol, 2014(104/105): 1-6.
    [24]
    吕鹏, 刘建坤. 冻土与混凝土接触面直剪试验研究[J]. 铁道学报, 2015, 37(2): 106-110.
    (LÜ Peng, LIU Jian-kun.An experimental study on direct shear tests of frozen soil-concrete interface[J]. Journal of the China Railway Society, 2015, 37(2): 106-110. (in Chinese))
  • Cited by

    Periodical cited type(23)

    1. 陈欣,安然,张先伟,陈昶,袁童. MICP固化花岗岩残积土的崩解特性. 长江科学院院报. 2025(02): 138-144+171 .
    2. 徐敏,刘正明,罗元喜,许宝田,刘开斌. 基于旁压试验的常州地区典型砂土变形特性研究. 工程勘察. 2024(07): 15-21 .
    3. 杨雪强,王坤,刘攀,朱海平,林楷彦. 广州原状花岗岩残积土非饱和力学特性的试验研究. 水利水电技术(中英文). 2024(06): 196-206 .
    4. 宋伟,房江锋,杜琦,李芬. 某项目抗拔桩承载力不足原因分析及处理研究. 工程质量. 2024(S2): 41-45 .
    5. 房江锋,张思祺,杜琦. 灌注桩抗拔承载力不足分析及应对措施研究. 低温建筑技术. 2024(12): 66-71 .
    6. 舒荣军,孔令伟,周振华,简涛,李甜果. 卸荷-增孔压条件下花岗岩残积土的力学特性. 岩土力学. 2023(02): 473-482 .
    7. 廖燕宏,王冉,夏玉云,乔建伟,贾如宾,杨晓鹏. 安哥拉花岗岩残积土强夯法地基处理试验研究. 施工技术(中英文). 2023(07): 149-154 .
    8. 陈欣,安然,汪亦显,陈昶. 胶结液浓度对MICP固化残积土力学性能影响及机理研究. 水利与建筑工程学报. 2023(06): 100-106+149 .
    9. 张晗,杨石飞,王琳,林天翔. 上海地区软土旁压加卸载变形特性试验研究. 岩土工程学报. 2022(04): 769-777 . 本站查看
    10. 冯义武,彭倞,岳娟. 亚湖水库花岗岩风化残积土防渗应用研究. 水利水电快报. 2022(04): 61-66+73 .
    11. 朱旻,陈湘生,张国涛,庞小朝,苏栋,刘继强. 花岗岩残积土硬化土模型参数反演及工程应用. 岩土力学. 2022(04): 1061-1072 .
    12. 齐信,黎清华,焦玉勇,谭飞. 梧州市巨厚层花岗岩风化壳垂直分带标准及工程地质特征研究. 工程地质学报. 2022(02): 407-416 .
    13. 安然,孔令伟,师文卓,郭爱国,张先伟. 结构性黏土的原位刚度衰减规律及数学表征. 岩土力学. 2022(S1): 410-418 .
    14. 安然,孔令伟,张先伟,郭爱国,柏巍. 基于原位孔内剪切试验的残积土强度指标及风化程度影响评价. 应用基础与工程科学学报. 2022(05): 1275-1286 .
    15. 舒荣军,孔令伟,黎澄生,刘炳恒,简涛. 考虑先期卸荷静偏应力的花岗岩残积土动力特性研究. 振动与冲击. 2022(17): 93-100 .
    16. 苗永红,卜梓轩,王玲,苏靖凤,殷杰. 扰动对软土累积排水量影响试验研究. 西安理工大学学报. 2022(03): 421-425 .
    17. 舒荣军,孔令伟,王俊涛,简涛,周振华. 考虑先期卸荷影响的花岗岩残积土湿化特性试验研究. 岩土工程学报. 2022(S1): 154-159+165 . 本站查看
    18. 王斌,韩幽铭,周欣,陈成,张先伟,桂蕾. 太湖湖相黏土层剪切模量衰减特性的原位测试研究. 岩土力学. 2021(07): 2031-2040 .
    19. 胡华,吴轩,张越. 基于降雨滑坡模拟试验的花岗岩残积土边坡破坏模式分析. 厦门大学学报(自然科学版). 2021(06): 1098-1102 .
    20. 安然,孔令伟,张先伟. 残积土孔内剪切试验的强度特性及广义邓肯–张模型研究. 岩土工程学报. 2020(09): 1723-1732 . 本站查看
    21. 安然,孔令伟,黎澄生,罗晓倩. 炎热多雨气候下花岗岩残积土的强度衰减与微结构损伤规律. 岩石力学与工程学报. 2020(09): 1902-1911 .
    22. 安然,孔令伟,柏巍,黎澄生. 单轴荷载下残积土的电阻率损伤模型及干湿循环效应. 岩石力学与工程学报. 2020(S1): 3159-3167 .
    23. 易军. 风荷载下的黄家仑地区残积土动静力特性研究. 长沙大学学报. 2020(05): 32-37 .

    Other cited types(7)

Catalog

    Article views PDF downloads Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return