• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
PAN Dong-dong, LI Shu-cai, XU Zhen-hao, LI Li-ping, LU Wei, LIN Peng, HUANG Xin, SUN Shang-qu, GAO Cheng-lu. Model tests and numerical analysis for water inrush caused by karst caves filled with confined water in tunnels[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 828-836. DOI: 10.11779/CJGE201805007
Citation: PAN Dong-dong, LI Shu-cai, XU Zhen-hao, LI Li-ping, LU Wei, LIN Peng, HUANG Xin, SUN Shang-qu, GAO Cheng-lu. Model tests and numerical analysis for water inrush caused by karst caves filled with confined water in tunnels[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 828-836. DOI: 10.11779/CJGE201805007

Model tests and numerical analysis for water inrush caused by karst caves filled with confined water in tunnels

More Information
  • Revised Date: March 01, 2017
  • Published Date: May 24, 2018
  • To study the stability of the surrounding rock of concealed karst caves under different filling water pressures and to reveal the water inrush mechanism, a self-developed new type of model test system is applied to the solid-fluid coupling model tests on lagging water-inrush of karst cave, and the variation of the multi-field information such as displacement, stress and seepage pressure is effectively revealed. The advantages of numerical analysis are used to carry out fluid-solid coupling numerical simulation of tunnel excavation process under different filling water pressures (0.4 to 1.1 MPa). Based on the results of model tests and numerical simulations, the karst cave has impact on the surrounding rock within the scope of one time the cave diameter. The stress level, stress release rate and dissipation rate of pore water pressure of the ordinary surrounding rock are higher than those of water-resisting rock mass. Among them, the displacement exhibits an obvious stable stage. In the course of excavation, the rate of stress relieving gradually decreases when the filling pressure increases. Moreover, the osmotic pressure increases as a whole, but the gradient decreases. Nevertheless, after the karst water pressure reaches 0.8 MPa, obvious change starts to appear. The process of water inrush is truly reproduced at the hydraulic loading stage. The test results are used to guide the design and construction of the similar projects.
  • [1]
    钱七虎. 地下工程建设安全面临的挑战与对策[J]. 岩石力学与工程学报, 2012, 31(10): 1945-1956. (QIAN Qi-hu. Challenges faced by underground projects construction safety and counter measures[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 1945-1956. (in Chinese))
    [2]
    李利平. 高风险岩溶隧道突水灾变演化机制及其应用研究 [D]. 济南: 山东大学, 2009. (LI Li-ping. Study on catastrophe evolution mechanism of karst water inrush and its engineering application of high risk karst tunnel[D]. Ji'nan: Shandong University, 2009. (in Chinese))
    [3]
    孙 谋, 刘维宁. 高风险岩溶隧道掌子面突水机制研究[J].岩土力学, 2011, 32(4): 1175-1180. (SUN Mou, LIU Wei-ning. Research on water inrush mechanism induced by karst tunnel face with high risk[J]. Rock and Soil Mechanics, 2011, 32(4): 1175-1180. (in Chinese))
    [4]
    莫阳春. 高水压充填型岩溶隧道稳定性研究[D]. 成都: 西南交通大学, 2009. (MO Yang-chun. Stability research on high water pressure filled karst caves tunnel[D]. Chengdu: Southwest Jiaotong University, 2009. (in Chinese))
    [5]
    王克忠, 李仲奎. 深埋长大引水隧洞三维物理模型渗透性试验研究[J]. 岩石力学与工程学报, 2009, 28(4): 725-731. (WANG Ke-zhong, LI Zhong-kui. Study of 3D physical model test of seepage of deep-buried long and large diversion tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(4): 725-731. (in Chinese))
    [6]
    王经明. 承压水沿煤层底板递进导升突水机制的模拟与观测[J]. 岩土工程学报, 1999, 21(5): 546-549. (WANG Jing-ming. In-situ measurement and physical analogue on water inrush from coal floor induced by progressive intrusion of artesian water into protective aquiclude[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 546-549. (in Chinese))
    [7]
    周 辉, 汤艳春, 胡大伟, 等. 盐岩裂隙渗流-溶解耦合模型及试验研究[J]. 岩石力学与工程学报, 2006, 25(5): 946-950. (ZHOU Hui, TANG Yan-chun, HU Da-wei, et al. Study on coupled penetratingdissolving model and experiment for salt rock cracks[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 946-950. (in Chinese))
    [8]
    刘爱华, 彭述权, 李夕兵, 等. 深部开采承压突水机制相似物理模型试验系统研制及应用[J]. 岩石力学与工程学报, 2009, 28(7): 1335-1341. (LIU Ai-hua, PENG Shu-quan, LI Xi-bing, et al. Development and application of similar physical model experiment system for water inrush mechanism in deep mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(7): 1335-1341. (in Chinese))
    [9]
    张金才, 王建学. 岩体应力与渗流的耦合及其工程应用[J].岩石力学与工程学报, 2006, 25(10): 1981-1989. (ZHANG Jin-cai, WANG Jian-xue. Coupled behavior of stress and permeability and its engineering applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10): 1981-1989. (in Chinese))
    [10]
    张志强, 阚 呈, 孙 飞, 等. 碎屑流地层隧道发生灾变的模型试验研究[J]. 岩石力学与工程学报, 2014, 33(12): 2451-2457. (ZHANG Zhi-qiang, KAN Cheng, SUN Fei, et al. Experimental study of catastrophic behavior for natm tunnel in debris flow strata[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12): 2451-2457. (in Chinese))
    [11]
    黄明利, 王 飞, 路 威, 等. 隧道开挖诱发富水有压溶洞破裂突水过程数值模拟[J]. 中国工程科学, 2009, 11(12): 93-96. (HUANG Ming-li, WANG Fei, LU Wei, et al. Numerical study on the process of water inrush in karst caves with hydraulic pressure caused by tunnel excavation[J]. Engineering Sciences, 2009, 11(12): 93-96. (in Chinese))
    [12]
    李术才, 李利平, 李树忱, 等. 地下工程突涌水物理模拟试验系统的研制及应用[J]. 采矿与安全工程学报, 2010, 27(3): 299-304. (LI Shu-cai, LI Li-ping, LI Shu-chen, et al. Development and application of similar physical model test system for water inrush of underground engineering[J]. Journal of Mining and Safety Engineering, 2010, 27(3): 299-304. (in Chinese))
    [13]
    李术才, 周 毅, 李利平, 等. 地下工程流-固耦合模型试验新型相似材料的研制及应用[J]. 岩石力学与工程学报, 2012, 31(6): 1128-1137. (LI Shu-cai, ZHOU Yi, LI Li-ping, et al. Research of a new similar material for underground engineering fluid-solid coupling model test and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1128-1137. (in Chinese))
    [14]
    石少帅. 深长隧道充填型致灾构造渗透失稳突涌水机制与风险控制及工程应用[D]. 济南: 山东大学, 2014. (SHI Shao-shuai. Study on seepage failure mechanism and risk control ofwater inrush induced by filled disaster structure in deep-long tunnel and engineering application[D]. Ji'nan: Shandong University, 2014. (in Chinese))
    [15]
    李术才. 隧道突水突泥灾害源超前地质预报理论与方法[M]. 北京: 科学出版社, 2015. (LI Shu-cai. The theory and method of geological prediction for the disaster source of water and mud inrush in tunnels[M]. Beijing: Science Press, 2015. (in Chinese))
    [16]
    胡耀青, 赵阳升, 杨 栋. 三维固流耦合相似模拟理论与方法[J]. 辽宁工程技术大学学报 (自然科学版), 2007, 26(2): 204-206. (HU Yao-qing, ZHAO Yang-sheng, YANG Dong. 3D solid-liquid couping experiment study of deformation destruction of coal[J]. Journal of Liaoning Technical University (Natural Science), 2007, 26(2): 204-206. (in Chinese))
    [17]
    Itasca Consulting Group Inc. FLAC 3D user manuals (version3.0)[R]. Minnesota: Itasca Consulting Group, Inc, 2005.
  • Cited by

    Periodical cited type(6)

    1. 秦爱芳,刘海生,李林忠. 非饱和土一维热固结理论研究. 工程地质学报. 2024(01): 265-274 .
    2. 刘妍,李毅. 考虑土石坝坝基接触带性能演化的渗流稳定分析. 科技创新与应用. 2024(17): 76-81 .
    3. 孙增春,陈萌,肖杨,樊恒辉. 考虑状态相关的饱和黏土热弹塑性本构模型. 中国科学:技术科学. 2024(10): 2030-2041 .
    4. 李建东,王旭,张延杰,蒋代军,刘德仁,胡渊. 球形蒸汽源增湿非饱和黄土水热运移规律试验研究. 岩土工程学报. 2022(04): 687-695 . 本站查看
    5. 曾立峰,邵龙潭,郭晓霞. 土中有效应力概念的起源与发展. 岩土力学. 2022(S1): 127-144 .
    6. 郑洁,郑红卫,王菁莪. 非饱和黄土弹性模量与饱和度关系模型研究. 长江科学院院报. 2022(09): 118-123 .

    Other cited types(13)

Catalog

    Article views (473) PDF downloads (460) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return